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Relevance to the Air Force

We are concerned with establishing a framework for an intelligent information
processing paradigm to be used with automated systems within the US Air Force (USAF).
This framework involves a process, one which is complex, widespread and extremely
important. The process involves intelligence -- the functions produced and enabled by the
brain. We envision this process as a series of transformations which takes many low level,
time-sensitive signals and produces fewer but higher level, more time-insensitive
constructs. Our goal is to automate portions of this process and be able to integrate this
functionality into Air Force systems.

The USAF constantly investigates ways to help position itself in the “Information
Age.” For example, in 1995 the Air Force Scientific Advisory Board initiated a study
called New World Vistas, the goal of which was to assess and predict how future science
and technology would influence military operations. The results of this study show
“information” to be a core concept. Air Force 2025, a thirty year look into the future done
by Air University, identified concepts, capabilities and technologies needed for the US Air
Force to remain the best in the world. Again, the concept of “information” was a
significant component in the study. Finally, the Air Force Core Competencies, which
define the strategic vision to take us into the next century, were recently modified to include
“Information Superiority.” Obviously we in the Air Force cannot address all the issues
regarding information, but we cannot afford to pass up the opportunities which related
emerging technologies present to us.

The need for this work is evidenced by many factors. Technology is changing at an
accelerated rate. Management of information in one form or another is a significant aspect
of the USAF mission. We have to capture data, harness information, create knowledge
and make decisions, all on a daily basis. If we do not do this well, for instance by using
inappropriate information or by making decisions at an improper level, we will have to pay
the consequences. Not only must we be able to process information intelligently but we
must also do so efficiently. This report addresses how the computer may be used to help
accomplish this task. Never before has the technology been available. Now that it is
becoming so, we must develop appropriate models. This report and the work that flows
from it are aimed at developing more efficient ways in which the Air Force can excel in this
information-driven world.
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0. Executive Summary

In this report we are concerned with trying to establish a framework for modeling
a particular kind of process. This process involves intelligence and the intelligent
processing of information. Additionally, we are interested in discovering ways to
automate at least portions of this process. Thus our overall goal is to automate intelligent
information processing. Finally, as part of our mission, we are concerned with how this
automation may impact the related disciplines of reliability science and electromagnetics.
Given the magnitude of this task and the scope of this work, this report addresses these
topics at a high level.

Any discussion of a topic such as intelligent information processing will no doubt
encounter problems with, among other things, terminology and the meaning of words.
We realize that the terminology used and meanings given or implied here may be
different than yours. We hope that you will at least recognize the main points we try to
get across. We must also mention that there is no one way to describe this process. In
fact, the process is so complex that it is for the most part a mystery. Thus our description
here is really just a beginning.

So why talk about this process at all, if it truly is a mystery? Why is it so
important? What does this process do, and where is it going? First of all, we all process
information, all day long, every day, with varying levels of intelligence. Most of this is
for our own personal benefit. But when we are involved with developing complex
systems which involve the use of computers in some manner or fashion, we are forced to
draw a line somewhere between what we do personally and what we may have our
computers do for us. The line between the two is unclear and the distinction is becoming
more and more important.

Some major goals of intelligent information processing are to reduce uncertainty,
to gain knowledge, and to establish truth. All these feed our need and ability to make
intelligent decisions. All of this constitutes a process, which admittedly involves many
sub-processes. If we are to automate any portion of these processes and apply them to
specific domains, we must first realize the fundamental principles involved. Without
knowledge of the underlying constructs, we cannot expect to build anything solid.
Unfortunately, a cohesive, concerted framework does not currently exist for intelligent
information processing. Artificial intelligence and other related fields have made many
inroads, but alas -- they have not cracked the nut!

What is needed is a model which will support the functionality needed to
accomplish the task at hand. Our model initially consists of ideas, described in this
report, which will eventually be tested by scientific method. To realize the benefits of
this model, obviously much more work must be done to develop appropriate details that
go along with the best top level constructs available. Once we have the shell of a model,
we can then further develop and refine the model over time. When the model is ready to
be applied, we will do so and see how well it performs on actual problems.

Many ideas are spread throughout this report. We attempt to tie them together in
some kind of cohesive fashion. We emphasize the word attempt, because when it comes
to information processing and intelligence, it is not easy to make sense of it all. Our
observations are based on research, compilation and correlation of our work and the
related work of many independent researchers. We bring up simple concepts, yet they
are undeveloped with respect to automation. These concepts are pieces of an enormously



complex puzzle. This is not a rigorous, detailed analysis. Here we offer a different
perspective, a general evaluation of the state of the art, so to speak, a common sense
approach which should allow us to better automate portions of this complicated process.
We make what we believe are some interesting observations, and intend to open this
topic up for further discussion.



1. Introduction

A basic premise of this work is that structure and order exist within our world,
and this fact should directly impact our attempts to automate intelligent information
processing. We can and should exploit the natural order present. Our brain holds a
model of the external world, or the physical world around us, but the brain’s internal
model is more than just a physical representation. The mental processes which represent
and approximate reality in its many forms have not yet been revealed. We attempt to
identify fundamental processes. We emphasize that with respect to intelligence and
automating intelligent information processing, we will not try to exactly match the
abilities of the human brain, but rather to match only certain processes or functions. The
specific functions we choose to model or emulate are yet to be determined, but no doubt
we will somehow have to exploit the natural order present.

The ultimate goal is to process data intelligently. This occurs naturally in the
brain. The goal of our work is to get computers to do some of this. Our brain is a user of
these so-called intelligent processes. It is also a developer, with self-organization built in.
This -occurs naturally. What is not so natural is to develop intelligence in a machine (i.e.,
a computer). As evidenced by the history of artificial intelligence, it has taken a
tremendous amount of effort to come as far as we have today, and we still lack a solid
framework on which to build intelligent machines.

When we mention the words “our model” in this report we actually mean an
abstract model. Since we must initially talk about a framework of a model, it is difficult
to talk about a “real model” before it is built. We will stress the importance of order and
organization to our model, and how information processing fits into this model. While
order exists, we will also point out and emphasize that change is part of that order. We
will discuss the science of change, which involves dynamical systems theory, and
mention how this area of study will impact our task. We will also discuss how the field
of artificial intelligence has attempted to automate intelligence, and we will look at some
major developments and promising directions within that complex field.

One set of questions to ask of our model would be “What is the product or output
of the model? What happens to the input? What drives the process? and Where is the
process going?” These and other questions have been in the back of our minds
throughout our work. It is interesting to bring them to the forefront and examine them.
We will address these and other questions in this report. Some of the other things we will
address are how we think and how we learn. The very nature of intelligent information
processing will be examined in light of our task at hand. The reasons for examining the
nature of intelligence are to come up with useful modeling ideas as well as to guide our
efforts. In our attempts to automate intelligence, the best example for us is somewhere
between our own ears.

As part of our discussion we will talk about what we call the nature of data, an
obscure topic with much potential in the information processing domain. We will also
introduce the data spectrum, which describes how fundamental components of data are
structured and related to each other, and the octave rule, which has to do with ranges and
order present in the natural processing of data. The input to our model or network is
generically called data, but for clarity we will provide a better definition. We will also
provide definitions for other important terms, with the realization that trying to define
abstract terms like intelligence and information may be counterproductive.



Once we have discussed our approach to modeling intelligent information
processing, we will address how we may develop and direct this approach to solve
problems in specific domains. The underlying processes of intelligent information
processing no doubt affect all disciplines, and efforts to automate the processes will
impact each discipline in a different manner. The difficult part is discovering the basics.
Here we are particularly concerned with the disciplines of reliability and
electromagnetics. We will see how looking at the fundamentals of reliability,
electromagnetics and information processing will be mutually beneficial. We believe that
in time interest and activity will increase across these areas, with much overall benefit to
the technological mission of the Air Force.

Work involving the automation of intelligent information processing has
significant long term implications. The Air Force cannot ignore the potential that the so-
called “intelligent technologies” may have on its mission. At Rome Laboratory, much of
our work revolves around computer simulation and modeling. We hope to develop more
efficient ways to process data, in all its forms. No matter if our concern is reliability or
electromagnetics or any other relevant technology area, we will constantly be challenged
to address “intelligent technologies™ in general and to develop specific ways in which the
Air Force will benefit from them.

1.1 Order, Organization and Information

We have already mentioned that structure and order exist in our world, and we
hope to exploit them in our attempts to automate intelligent information processing. This
structure and order is evident everywhere, given the proper perspective. Order exists
external to the brain, and it also exists inside the brain. The internal order of our brain is
actually a model which represents the external order we perceive. We achieve a natural
harmony, an understanding, when the two line up, so to speak. The internal
representation in our brain is made up of matter and energy, just as everything else is.
But there is more to the story. There is something else which results from the dynamic
actions and interactions of matter and energy inside the brain. We generically call this
product information, but there are other names for it also.

We understand that the entire universe consists of matter and energy. Let us now
assume, for argument’s sake, that information is also a basic property of the universe.
Information is used to describe such things as distance, time, motion, direction, etc.,
entities which cannot be defined in terms of matter and energy alone. Information is an
additional requirement which describes and relates the order and organization present in
all forms of matter and energy. Information is a kind of language for the universe. The
word, taken literally, implies the reduction of uncertainty. If information actually does
reduce uncertainty, then the term will serve our needs quite well here.

The issue of information being of similar status in the universe as matter and
energy has been virtually avoided until now (Stonier, 1990; Wiener, 1967). It has taken
the advent of the modern computer and man’s attempts to build intelligence into the
computer to make us realize that this issue requires further attention. The distinguished
scientist and scholar Norbert Wiener said that the job of the scientist is to discover and
explain the order and organization present in the universe (Wiener, 1967). If we want to
somehow model that order, we must first acknowledge that the order exists, attempt to
describe its nature, and then capture the essence of that order in a model. This would
inevitably involve a process, and the process would have to be dynamic. In this case the
process transforms what we call data into something more useful, i.e., knowledge. As
humans we interact with this process daily, and we can even change its course. What this



really means is that we are changing the order in our model, our internal representation of
the world -- we are changing our mind! We say that the product of this process is
knowledge. Actually, we could use other terms like information, wisdom or truth, but the
point is that the initial raw material, the data, gets converted into something more useful.
The set of processes which allows us to achieve this involves transformations, and we
acknowledge these transformations in light of the ever present order, organization and
information around us.

We must mention that our usage of the term information is very different from the
context of Shannon (1949) as well as that of communication and information theories. In
their context, information concerns the nature of the transmission of signals in the
presence of noise, over a communication link, without regard to the inherent meaning of
those signals. In this report we are not so much concerned with communication and the
actual transmission of signals, but with the content and especially the meaning of those
signals with respect to a process which leads to understanding and intelligence.

1.2 Change

We have mentioned that order and organization are inherent properties of life.
Everything goes through change. Some of the change is noticeable, and some is not.
(This is mainly due to issues of scale -- time, size, form, etc.). What this means is that
things go from some kind of order, through change, to some kind of new order. If you
start to consider where or when one kind of order ends and another one begins, it
becomes impossible to draw the line. This is because the change, the actual transition, is
part of the basic order or scheme of things. One of our tasks is to consider what or where
this change leads to. The whole process of change implies a dynamical system, which we
will discuss further in Chapter 4. The important point to remember is that change is part
of a natural process. We will attempt to exploit the process of change by examining the
natural transitions and transformations which occur with respect to data and intelligent
information processing.

Change which occurs in nature is often due to an iterative process. This means
that the process occurs over and over again. For this to happen, the conditions have to be
just right. That is, the root cause of the change has to remain present and the
environment has to continue supporting the change in one form or another. As it turns
out, this happens often in the brain. Note that in the brain the root cause is not the data or
entering signals. The root cause is some biological process. Data is a kind of fuel for the
process. When we think and learn, the conditions are usually just right to sustain the
many iterative processes and transformations within. However, with change being such
an important factor, we can imagine that the current state of our mind is relative. This
means that the “state of mind” can and does change, depending on the many forces and
influences present at any given time. It’s no wonder that we have so many clichés when
it comes to describing the mind’s processes -- we don’t really know what’s going on
inside! We do know one thing though, that change is an integral part of the process.

1.3 The Nature of Data

The nature of data includes the physical nature of data as well as the resulting
cognitive products, the signals and patterns that comprise our mental associations. The
concept of the nature of data includes the data spectrum and the octave rule, each of
which will be described in Chapter 2, and the harmony of data, which deals with how
signal components combine and interact with each other as part of a constructive
arrangement or pleasing integration, contributing to the control and order of a more



global system. We will use these and other concepts to show how important order is in
information processing and how it may be used to model intelligence.

A study of the nature of data begins with one or more signals. These signals are
the result of a disturbance in some physical entity. For intelligent information
processing, the signals are either generated external to our body and received by our
senses, or they are generated within our body due to some sub-process and are then
transmitted as signals within. Either way, for all practical purposes, we can consider
them as signals when they reach the brain. This is important because it provides a
common ground on which to stand for the purposes of intelligent information processing.
We now have a generic starting point that covers all possible sources of information, and
we can concentrate on subsequent processes. We need only to worry about the nature of
signal interaction. Even though this may not be the actual case in our brain, it is
sufficient to get us started. It is also interesting to note that once a disturbance which
generates a signal is gone, the only thing that remains in the brain may be that same
ethereal entity we referred to earlier and generically termed information. The signals go
in and they do something. What is happening? Something is forming.

As signals enter and travel within the brain, they are transformed and transitioned
in many different ways. The nature of the network and the forces and influences present
manipulate the basic components of signals. These basic components are frequency,
phase and amplitude, the building blocks of the signal. Regardless of where they
originate, in order to play the brain’s game of information processing, all signals (their
components) have to conform to the brain’s rules. Along the same lines, if we are to
build a model which performs intelligent information processing, we must design our
system or network to manipulate basic signal components. We have to define the rules of
the game. Our model, its very framework, must conform to fundamental principles of
nature. By examining the basic functionality of the brain, we can begin to model and
develop some of these functions simply by manipulating signal components.

The kind of manipulation of signal components we are referring to gets to be quite
complex, as we shall see. After all, we are talking about the man-made equivalent of
intelligence. Among other things, our model must be able to handle many different kinds
of signals which could interact and interfere with each other in many different ways. We
will emphasize the importance of signal resonance in our model. Resonance is due to the
reinforcement of normal or fundamental modes of vibration. With respect to signal
interaction, resonance is characterized by the intense or enriched response to signals
(forces) present. The natural vibrations of signal resonance, along with their possible
variations, are an essential part of (our impression of) natural intelligence. Resonance
may provide a kind of reference for intelligent information processing. We will also use
other signal interaction properties, such as interference, harmony and associations, as part
of our model.

In a practical sense, the usefulness of such signal manipulation within a model is
all a function of design, and we are not suggesting that our model can perform the kind of
functionality that the brain can. We are not trying to duplicate exactly what goes on in
the brain, but instead we are after only a small subset of the basic processes therein. In
our model, we must be able to build up complex signals by combining many simpler
components. We will also have to break complex signals down into their fundamental
constituents, being careful not to destroy or distort any inherent information. All of this
will be for the purpose of getting useful information out of the signals which enter and
are transmitted within our model. In the long term, by carefully manipulating the phase,
frequency and amplitude components of signals, we believe we will eventually be able to
engineer into our computers something akin to the man-made equivalent of intelligence.

6



2. The Data Spectrum and the Octave Rule
2.1 Describing an Elusive Process

As part of our analysis of intelligent information processing, we initially tried to
imagine what kind of processes or mechanisms had to take place at a high level. We
knew that signals entered the brain via the senses, and considering sight and sound, these
signals were oscillating at high frequencies. We say high with respect to those of
thinking or communicating, which are orders of magnitude slower in frequency than the
signals constituting what we see or hear. This indicated that a set of reductions or
transformations must take place. Some kind of process, or set of processes, was taking
signals with high frequencies and converting them into new signals with inherently lower
frequencies. Upon further consideration, we developed a framework or conceptual
structure to portray this process. This framework represented the various forms of these
signals as well as their inherent relationships. We call this framework the data spectrum.

The data spectrum provides a unique perspective from which to view intelligent
information processing. As part of the concept, incoming high frequency signals are
converted into something with lower frequency, but more importantly, something with
more value. Although the data spectrum provides us with a useful framework, it does not
fully describe the process. Subsequent consideration revealed another related process
which allows the many signal reductions and transformations to take place in an orderly
fashion. We call this process the octave rule. Together, the data spectrum and the octave
rule have helped us to better envision and describe an elusive process, namely --
intelligent information processing. :

2.2 The Data Spectrum

Intelligent information processing is a dynamic process. It ultimately involves the
transformation of signals into something meaningful and useful. In an attempt to avoid
confusion, we will begin by defining some important terms. Data is the term given to the
most basic class of signals. Data is input, raw material or fuel for the entire process. Any
class of signals with frequency, phase and amplitude components can generically be
called data. Information is a term which describes an. orderly arrangement of data, and
thus is a more organized form of (the generic term) data. Knowledge is defined as
organized information. With knowledge comes more refined associations. Knowledge is
that which relates data or information to something of more value, such as a particular
meaning or an inherent association. Intelligence is the ability to acquire knowledge and
to effectively apply that knowledge in a changing environment. All of these concepts
hinge upon the fact that during intelligent information processing data is transformed into
knowledge.

This forms the basis of the data spectrum. As shown in Figure 2.1a, raw data
signals get combined and organized into information, and then may get transformed into
more complex associations called knowledge. The data spectrum portrays this transition
of signals from some initial form to some final form. But in reality, the form is relative,
because at any given time, all that matters are the associations which exist with respect to
the signals present, in whatever form, at any given time. In a larger sense, what really
matters is where those associations are going, or what they produce. This dynamic
process involves learning and produces knowledge, enabling intelligence (Figure 2.1b).
With respect to the overall process, we may assume that the product or output involves
communication. However, as we have implied, the real product of intelligent information
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Figure 2.1 (a) Basic data spectrum shows data elements as a function of frequency.
(b) Transformations of data signals enable intelligence.

processing is not communication, but each and every complex association which
ultimately comprises intelligence.

We were initially interested in a specific aspect of intelligent information
processing, namely, the aspect which concerns the frequency component. We knew that
frequency had to play a key role in the overall process. We felt comfortable with the
natural implications of this since time and frequency are closely related concepts. As is




portrayed by the data spectrum, time-sensitive data gets transformed into less time-
sensitive information, and then into even less time-sensitive knowledge. This means that
the importance of time is somehow being reduced (or concealed). The resulting
associations are becoming more generic, more independent of time. Herein lies one of
the strong-points of the process portrayed by the data spectrum -- the process transforms
but does not remove the element of time (or frequency) from the signals. Time is built
into all forms of data. The transformed signals are less time-sensitive, more general. But
they still have the essence of time built into their complex associations.

This concept of generic associations is very important with respect to the data
spectrum, because it leads to generalization. In the process of transforming many signals
with relatively high frequencies, the data spectrum implies that the process produces
fewer signals with lower frequencies. But perhaps most important, the resulting signals
have something which did not exist in any of the original signals. The newly formed
signals have inherent associations, general concepts, and main points built right into
them! One of the essential features of intelligent information processing is to allow us to
make sense out of the volumes of so-called information we deal with daily. The natural
tendency to generalize in an orderly fashion is reflected in the data spectrum.

We can see that the word data has already taken on multiple meanings here. One
definition for data is the most basic form of input, as in raw data. Another comes from
using data as the root word of a more general concept which includes many forms, as in
the data spectrum. Unfortunately, we will be using both meanings in this report. As for
order and organization and the data spectrum, we have seen how the transformation of
raw signals into more orderly forms are portrayed by the data spectrum. The price to pay
for this order is the amount of control and effort needed to accomplish meaningful
transformations. We can envision a model of intelligent information processing having
specific features by design. One such feature is an architecture with layers, each
performing some subset of the overall process. In going from signals with high
frequency to those with lower frequency, we naturally envision a filtering process which
keeps track of these so-called frequency ranges. The filtering process has to be able to
focus signals into natural ranges for subsequent processing. This requires an orderly
process which we call the octave rule.

2.3 The Octave Rule

The octave rule is part of a natural process which controls the interaction of signal
components in intelligent information processing. The octave rule helps scale, filter,
focus and group data into specific intervals. The most common interval or ratio is two to
one. The octave rule is a generalization of the musical concept of an octave, where a
group or range of signals exists within a ratio of two to one (that is, the largest frequency
component in an octave is twice the smallest). The important point is that a certain kind
of order exists, and this order is not just found in music. We believe the octave rule is
part of a more generic process. The general concept of an octave can involve any ratio,
not just two to one. Also, the general concept is not limited to frequency components.
For example, in image processing, amplitude or size seems to conform to the same kind
of principle. This has to do with the importance of scale with respect to the modeling
process. We will talk more about the importance of scale later.

The octave rule is part of the orderly process of reducing many signals to fewer,
more general signals. Thus it is a scaling process. Control of the process causes signals
to form into natural groups or ranges, allowing for more focused processing. The octave
rule is ultimately part of an iterative process which involves feedback to help control the



process to stay within an octave. We envision it as part of an internal system of checks
and balances which helps maintain order. The octave rule has allowed us to conceptually
break a very complex process down in an orderly fashion. The process of interference
involving many signal components within an octave results in fewer signals. Although
there are fewer signals, each one has a richer, more complex set of associations. More
importantly, we believe that the similarities and differences between the resulting signal
associations within an octave play a key role in intelligent information processing. We
shall see that within an octave, associations exist which form the equivalent of reference
and range, which leads to what we call “concept within a context,” described more in
Chapters 5 and 6.

, The filtering and focusing processes which occur at various levels in the brain
result in relatively few output signals as compared to the large amount of signal activity
going on in the brain at any one time. By virtue of an octave involving a relatively small
ratio, say two to one, signals within one octave are already close to each other, so to
speak. We believe this plays a major role in intelligent information processing because it
allows the exploitation of signal similarities and differences within a close range. For
instance, by helping reduce, filter and focus many signals into increasingly finer ranges,
the octave rule can help highlight relative differences of remaining signal components.
These signal differences can be used to further process and more efficiently control
necessary signal interactions. Signal similarities can be used for reinforcement. The
overall process, however, must be such that significant signal components are maintained
and insignificant ones are eliminated. This will be a difficult task for our model to
perform. But for humans, this kind of signal interaction has something to do with
conscious decision-making, along with unconscious activity as well. Whatever the case,
all this happens naturally, mainly by virtue of the processes of constructive and
destructive interference. All in all, the concepts of the data spectrum and the octave rule
can help describe intelligent information processing, where data gets transformed into
information and perhaps into knowledge in the complex processes of intelligence.
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3. Artificial Intelligence and Neural Networks

The next part of our discussion involves artificial intelligence, or Al, which may
also stand for automating intelligence. The discipline of Al has been around for almost
forty years, with a lot of activity and many developments. However, as the history of Al
has shown, the road has been long, with many ups and downs. Controversy has existed
right from the start concerning which approach to take, what constitutes success and even
whether or not it is possible to automate intelligence. One such controversy concerns the
discipline of neural networks. For example, we believe that neural networks is a sub-
field of AI. We say this because both areas are trying to do virtually the same thing,
using different approaches and working at different levels of abstraction. Both areas
attempt to model certain aspects of human intelligence using computational methods.
The more generic term for this is artificial intelligence. However, we do not wish to
create terminology problems. We shall see that while the approaches of these two
disciplines are quite different, benefits will be gained from work in both areas.

3.1 Attempts to Automate Intelligence

At a high level, in order to be considered intelligent, a model must be able to
perform certain tasks, such as inputting, outputting, using, storing and learning
information in an effective way. There are many ways one could approach the
development of such a model, and certainly many have been tried. A good account on
the history of Al is given by Crevier (1993), and Arbib (1995) provides an interesting
view of past and present work in many disciplines related to neural networks. Our work,
however, has been influenced by a general sense that something very important was
missing from the big picture. We have struggled to find a proper foundation for our
work. In the very least, we look for an appropriate direction in which to proceed. This
report reflects our general approach and perspective on how to automate intelligence.

We have defined intelligence as the ability to acquire knowledge and to
effectively apply that knowledge in a changing environment. This implies the existence
of goals and a process for achieving these goals. As for a changing environment, Al
codes have traditionally had much difficulty dealing with change (i.e., learning).
Unfortunately, nothing in Al or neural networks is as generally applicable or widely
accepted as we would like. Today’s programs are nowhere near being able to do what
the brain does naturally. An even more challenging issue concerns the full potential of
the brain. While we believe human abilities are far from being fully tapped, lagging quite
far behind is the automation of some of the normally recognized abilities.

The main approach taken by those in conventional Al has emphasized symbols, or
formal symbol manipulation, in attempts to automate intelligence. Out of this approach
has come many developments in such different areas as logic, reasoning, planning,
knowledge engineering, representation, recognition, control, language and rules.
Research in neural networks, on the other hand, has concentrated on basic architectural
considerations including such areas as weighted connections and layers of processing
elements. The biggest promise of neural networks is the ability to incorporate learning,
mainly by virtue of their adjustable weights and neuronal transfer functions. While both
conventional Al and neural networks have very different approaches, both disciplines
work toward a common goal -- to embed aspects of intelligence in computers. The view
that conventional Al and neural networks comprise different parts of a single big picture
is illustrated in Figure 3.1. This illustration is an extension of the data spectrum concept.
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Figure 3.1 Hierarchy of artificial intelligence.

The normally perceived functions of intelligence reside in the outside layer of
Figure 3.1. We consider external communication and language to reside in this region.
This includes all forms of communication, regardless of which of the senses is involved.
It is at this highest level that we are able to manipulate symbols, examine cause and
effect, and in general to perform actions normally attributed to conscious thought.
However, underneath this functionality there must be a framework or supporting
structure. The very essence of this framework should support the many relationships
among signals, the so-called associations, used in intelligent information processing.
Together, the internal structure and workings (e.g., neural networks) and the external
layers and functionality (e.g., conventional AI) work to produce intelligence. Emphasis
in conventional AI has been mainly at the external level, while that of neural networks
has been more at the internal level. Each approach has failed to capture the essence of
intelligence, yet both contribute to the task at hand. We feel that both approaches are
needed. However, even taken together, there are still important pieces missing. At the
very least, links are needed between conventional Al and neural networks which will add
functionality to each approach as well as enhance existing features.

3.2 Lessons Learned

Much has been learned over the years by researchers in both conventional Al and
neural networks. An understatement is that the task is difficult, and good results are hard
to come by. In a technical area that doesn’t have a solid enough foundation, we lack
sufficient theory to give a detailed explanation of intelligent behavior. Consequently,
attempts to automate or simulate intelligence have not done too well. We certainly
cannot declare success, if success is to be measured by widespread acceptance. Of
course, there have been many successes on a smaller scale, depending on who you ask
and what their definition of success is. But all in all, we still need a better foundation
from which to build our applications.

One major criticism of Al programs has been for working on problems in very

limited domains. The problem stems from the nature of intelligence, and its dependence
on understanding the meaning of (many diverse) important concepts within appropriate
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contexts. As a result, researchers have had to severely limit their problem domains in
order to progress. Another thing we have learned is that, as far as intelligence is
concerned, a process is at work. This process involves the transformation of signals in
various forms into something very meaningful and useful (i.e., associations). We know
that different approaches to Al concentrate on different aspects of intelligence. We need
to search for common or primitive elements of intelligence from which we can develop
better models. We should integrate useful portions of existing theories and also fill in for
missing functionality by proposing and developing new ideas.

One of the most important aspects of intelligence involves associations. We
envision intelligence as consisting of many kinds of associations. Conceptually,
associations relate inputs to outputs. From a neural perspective, associations result from
many inputs being combined by neurons, which then produce outputs that are some
function of the inputs. The realization and implementation of associations in engineering
models is the subject of much research. As the brain develops over time, we envision
complex associations building up and being embodied in the brain’s network. Together
the brain’s architecture and operation enable it to learn just about any kind of association.
Associations enable the brain to organize, recognize, and analyze data. It can classify,
optimize, estimate and evaluate. The brain can also generalize, memorize, predict, model
and control. Somehow all of this results from basic signal components interacting with
other network components. We have mentioned earlier that signals entering and
traveling in the brain contain information in various forms or stages of development.
This so-called information exists as signal associations. Associations (input-output
mappings) exist at and across various levels of the brain, resulting from combinations and
interactions of signal components as they pass through and between neurons. At a higher
level, associations build concepts. From concepts come all sorts of intellectual baggage.
We believe that the stringing together of associations and concepts leads to consciousness
and thought. Without the underlying mechanisms involving signal associations, it would
appear impossible to attain the higher level constructs of intelligence.

We now briefly mention a few lessons learned from some of the many different
areas of conventional AI. Various automated methods which make inference or draw
conclusions have been developed, but new ones must be able to identify main points of a
concept within an appropriate context. This requires mechanisms for reference and
range, as well as ways to address the ever-important issue of meaning. As for
mechanisms which make decisions, they must be made to do so at the proper level or
scale, which depends upon the situation, or signals present. We believe that a process-
oriented approach will help in the development of better models. As for rule based
systems, which have been made useful in many applications, these systems must
eventually be augmented with the ability to learn, or at least the ability to handle
exceptions and variability. Learning can help compensate for rigid rules. As for logic,
various forms of formal logic have been developed over the years, but for the most part
they are limited by their lack of emphasis on meaning. Various methods to approximate
reasoning as well as methods which address meaning of a concept within an appropriate
context will help. Knowledge acquisition is another area of concern in Al, with sources
of knowledge and methods of representation important considerations. One way to
address these concerns is to build knowledge bases from the bottom up, using basic
elements or knowledge primitives and common features (e.g., statistical methods).

Many lessons can be learned from work in neural networks also. Various
methods of learning have been suggested, with much emphasis on supervised forms of
learning. However, unsupervised methods are also needed to handle learning in a more
natural and unrestricted way. Networks which allow this are sometimes referred to as
self-organizing systems. The most difficult networks to design may turn out to be the
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most robust and versatile. For example, the functionality of the brain involves nonlinear
transfer functions, feedback, parallelism and asynchronous operation. How can we
model this? We will eventually have to incorporate dynamical systems concepts to
model this kind of functionality. As for binary-based models and programs built to run
on digital computers, we must develop methods to better handle approximations (e.g.,
fuzzy logic), uncertainty and probabilities, and not just the extreme cases of “0” and “1”.
With respect to the decision-making process, we would like to mention one aspect of the
serial/parallel processing issue. Regardless of what processes may be performed in
parallel, the overall decision process may be modeled as a single decision mechanism
which occurs in a serial fashion. Such appears to be the case in human decision making,
with people making conscious decisions one at a time. We may, to some extent, perform
input, output and background processes in parallel (Pashler, 1993), but when it comes to
conscious decision making, we seem to do this serially. As for timing considerations,
synchronous is precise and orderly, but the world is not synchronous. While everything
in the world is affected by time, they are not all lined up in time, so to speak. Our model
must be able to handle asynchronous inputs and situations. With respect to architecture,
hierarchy is important, as is the ability to scale up and down. This implies the need for a
layered architecture and a scaling process (e.g., the octave rule). The neural network
model of processing elements connected by modifiable weights seems to offer
appropriate mechanisms for representing associations.

We have only mentioned a few general concepts concerning over forty years of
research. In time, better models will be developed, and they will have to be tested.
Testing involves identifying processes, monitoring and controlling them, knowing their
outputs, and understanding their fundamental behavior. Models will be developed,
applied, and then forced to evolve. It is often helpful to look at past developments. Also,
it can be especially important to consider where things appear to be going. It is in this
vein that something very important appears to be missing from the collective work in
conventional Al and neural networks. We touch upon this issue throughout this report,
and although we do not provide all the answers, we offer a few suggestions, and also try
to ask some important questions.

As for the state of the art in computer technology and it’s impacts on Al, there
will always be researchers who say they need more computer power to enable whatever
approach they’re advocating. However, the amount of power is not as important as the
clever and efficient use of that power. The usefulness of any technology is a function of
intelligence -- we must make the most out of what we have. We have plenty of
processing power right now. What we need are better models. As time passes,
computers will become more and more powerful. But we must overcome an enormous
stumbling block, and that is, how to represent the basic functionality needed to model
fundamental aspects of intelligence.

Over the years, failure to capture the essence of intelligence in machines has
generated excuses involving such things as inadequate theories and models, programming
languages and compilers, and even the state of the art in hardware and software.
Certainly these excuses, or reasons, may be true in very specific situations, but in general
we will always be confronted with limitations of some kind. Each approach will
necessarily have its own limitations. By the way, there have been many different
approaches aimed at automating intelligence. Attempts have come under many names,
each having a slightly different goal or emphasis. These include such areas as expert
systems, fuzzy logic, approximate reasoning, genetic algorithms, evolutionary
programming, artificial life and computational intelligence, to name a few. The bottom
line is that we are quite a ways off from truly automating intelligence. We must look for
commonality among existing theories and build from it. Artificial intelligence and
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related technologies are tools. They are enabling technologies that are still being
developed. This is a volatile field, and given the information age, we are in especially
trying times. Knowing this, we must handle these information technologies with care.

3.3 Future Directions

We have seen that many approaches exist in the attempts to automate intelligence.
We have mentioned only a few here, with others yet to be considered. Our main concern
is in developing a useful, versatile model. We try to use natural concepts or processes,
i.e., those observed in nature. However, when doing simulation, certainly anything that
works should be considered. Design and development of a model should address overall
behavior. This includes the behavior of internal components, as well as how these
components interact with the external world. In the computer world, we must consider
hardware and software issues, as well as the gray areas in-between. We must also
consider both short term and long term effects. And last but not least, our model must be
able to handle change. Change is natural, but there is order even in change. Order should
be exploited in any way possible. Byproducts of order are harmony and resonance,
important concepts in our model. Learning and adaptability are also key concepts.
Generalization is another fundamental component to higher intelligence, as is the use of
complex associations. Better automated use of sensory data is also crucial. Without this,
common sense for machines seems impossible.

Our approach to modeling intelligent information processing has emphasized the
use of signals rather than the manipulation of symbols. As such we see the frequency,
phase and amplitude components of signals as fundamental building blocks for
computational models. Signals may be represented and processed in many different ways
and forms, both spatially and temporally. Pulses are one way to represent, transmit and
process signal components while maintaining both space and time characteristics
(Johnson, 1994). Pulses may be used to model the equivalent of action potentials in the
brain as described by neurobiologists (see, for example, Kandel and Schwartz, 1985).
Coupled oscillators and state attractors, described in the next chapter, may prove to be
very beneficial in future computational models. Also, by combining fundamental time
and frequency domain characteristics, resulting transformations may allow for more
efficient processing (Hlawatsch and Boudreaux-Bartels, 1992). As models become more
and more advanced, higher levels of abstraction and representation are needed, such as
the use of symbols and objects, to help capture and communicate the essence of
intelligence.

In our attempt to automate intelligence, we are not after a computer program, per
se, but instead we are after a computerized process. The process is the key. We are after
an orderly process which transforms raw signal activity, or data, into something more
meaningful and useful, such as knowledge. As such this process must exploit order. The
process can be broken down into sub-processes. Throughout this report we offer our
perspective on how to begin modeling these processes and sub-processes. Certainly more
work is needed, as are other perspectives. We must learn from the past, and keep an open
mind. As we have already mentioned, one of the things we need to do is form better links
between conventional Al and neural networks. Neither conventional Al nor neural
networks, as we know them today, can do it alone. Each has very desirable aspects. We
are all examples that intelligent information processing requires at least these two levels
of functionality. Why shouldn’t our models?
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4. Dynamics and Coupled Oscillators

We now turn our discussion to an area which involves dynamics. All systems
exhibit a certain degree of dynamic behavior. Dynamics involves change, which often
implies a process, such as iteration. One may model and predict the behavior of many
processes using simple iteration. Given the proper function, iteration can produce very
intricate and complex order, such as in the Mandelbrot set (see, for example, Gleick 1987
and Penrose 1989). We are interested in modeling dynamic behavior. We would also
like to include some form of automated intelligence in our model. Thus we investigate
certain dynamic aspects of brain behavior. In the long run, we would like to know what
to expect of our system’s behavior as it changes over time. This involves the study of
dynamical systems. We will necessarily limit our discussion here to certain basic
concepts. )

Dynamical systems theory allows us to describe the behavior of a system as it
undergoes change. This is done by describing the properties of the system under study
using a set of parameters. By changing the values of these parameters, the corresponding
response of the system will trace out curves, or trajectories, which reflect the asymptotic
behavior or limits of these values over time. Whether used in the experimental sense or
in the modeling sense, dynamical systems theory can be used to help design, control and
predict the behavior of a system as it undergoes change. One of the uses of dynamical
systems theory is to predict system behavior using a model, with the behavior of that
model adequately reflecting actual system performance.

As a dynamical system undergoes change, its behavior is such that individual
parameters approach state attractors on their way toward (a more stable) equilibrium. We
may use concepts such as state attractors, state space and phase portrait to help model the
behavior of a system over time. State space refers to the set of all possible states of a
system. Each state has an associated trajectory which represents a possible path leading
to an attractor. An attractor is a stable state, one which the system approaches over time.
Together state attractors, trajectories and state space can be used to develop what is called
the phase portrait of a system. A phase portrait portrays the total behavior of a system,
which includes the overall tendencies of its parameters (e.g., position, motion, direction)
over time.

4.1 The Nature of Changing Data

A dynamical system is any system that moves or changes over time. Given this
general definition, we can imagine that everything is part of some dynamical system and
is thus going through some kind of change. Even stationary objects, which have the
appearance of not changing, are undergoing change at some level or scale. Thus in order
to be as realistic as possible, our model should address change and/or the scaling issue.
This requirement is obvious when considering the functionality of the brain. We realize
that, depending on what you are trying to accomplish, a more static model may suffice.
We have already talked about the nature of data in Chapter 1, which included such
concepts as the data spectrum, the octave rule, and system harmony. We know that
signals entering a system are subject to the rules of that system. These rules must
ultimately reflect natural order and the laws of physics. We have also mentioned that
change, by definition, is an important part of intelligence. Thus we search for methods
which allow us to represent and describe the changing nature of data.
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We have mentioned that the process of iteration is a simple example of a
dynamical system. The process begins with a seed or an initial state, and involves some
function being iterated. After each iteration, the results may be fed back into the function
for the next step of iteration. When dealing with nonlinear functions, simple iteration can
breed very complex order. This happens all the time in nature, and is especially obvious
in living systems. Each form of life begins with a seed, and through processes involving
(seemingly simple) iteration, complex life forms emerge. The point is that iteration is
important, but even more important, a process is at work!

Our model is based on the premise that as signal components transition from level
to level, from state to state and from one form to another form, the overall behavior
(process) can be modeled using a computer. Concepts such as the octave rule and the
data spectrum can be helpful in describing the transformations and transitions which
occur. By examining the nature of changing data, the underlying processes involved may
provide clues on how to model certain aspects of intelligence, such as the decision-
making process. The word transformation taken literally means to change form. The
root word form is an indicator of what should be important to us in efforts to model
intelligent information processing. The boundary regions which exist around stable states
or forms of data may be used to model the decision process in part by considering a
decision as a transition or choice between possible stable states. Each state would
ultimately have some kind of boundary associated with it. A decision would involve
crossing a boundary, or threshold, by varying some set of parameters. This is a very
simplistic view, considering that boundaries themselves can change. However, we must
come up with better ways to model the decision-making process, since decisions are
fundamental to intelligence. All of this involves trying to characterize the nature of
changing data and embedding this characterization into a workable model.

4.2 Oscillators

The operation of the brain involves much dynamic behavior, with signals
traveling and fluctuating in a very complex fashion. However, there must be an
underlying order to these fluctuations and transitions. Oscillators may be a natural way
to represent the vibrating and periodic nature of changing data in the brain. Generally
speaking, an oscillator is something whose response varies above and below some mean
value. Since we are interested in signals with amplitude, frequency and phase
components, oscillators satisfy this requirement. Also, oscillators accommodate other
natural characteristics of dynamic behavior, such as feedback, stability, iteration and
periodicity. Finally, the concept of an oscillator is akin to that of a periodic attractor,
since both can be used to model periodic behavior. A stable oscillator is a periodic
attractor. Due to the iterative nature of many biological sub-processes, we may use
oscillators to help model intelligence. While other kinds of state attractors may be used
to model complex system behavior, periodic attractors are a natural first choice.

As a point of clarification, the term oscillator is used here not in the classical
(hardware) sense, such as in a pendulum, spring or an electronic amplifier with feedback.
We use the term oscillator more in a software or modeling sense, as an abstraction of the
hardware concepts just mentioned. In a modeling sense, an oscillator can be used to
represent and process dynamic signals and to describe their resulting periodic behavior.
In general, signals with amplitude, frequency and phase components may naturally be
represented using oscillators since such behavior represents a response which varies
above and below a mean value. However, the term oscillator has a connotation of being
periodic, which means that its behavior repeats itself. We use the term oscillator in the
general or abstract sense, with the simple goal of representing stable periodic behavior.
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As such the classical (hardware) concepts of oscillators (spring, pendulum, etc.) may also
be modeled in software. The term coupled oscillators refers to the combination or
interaction of two or more oscillators. Oscillators, or more appropriately, coupled
oscillators, may be used as building blocks in a computational model involving complex
behavior. The purpose of this computational model is to describe and predict dynamic
(periodic) behavior, with the additional goal of ours to incorporate certain aspects of
intelligence into that model.

4.3 State Attractors

We have mentioned several times how important change is, and that virtually
everything involves change. It would then be natural to ask “In what direction is
everything, or anything, going?” and “How does it get there?” The answers depend on
many factors. In general, dynamical systems theory offers us the term state attractor to
help address these issues. For our purposes, a state attractor refers to a stable state which
a system or sub-system tends to approach over time. An attractor is literally that which
attracts or pulls together. The physical nature of any system is such that the forces and
influences which are present naturally create these so-called state attractors. System
behavior tends to approach state attractors, which are a kind of equilibrium state. Here
the term equilibrium does not necessarily mean a static or steady state, but implies
anything that is relatively stable. For example, systems exhibiting oscillatory behavior,
and even certain kinds of chaotic behavior, may be considered to be in equilibrium.

Dynamics refers to the behavior of a system as it moves or transitions between
different possible states. The term state attractor is used to describe a general class of
stable states. The three most common types of state attractors are the static attractor, the
periodic attractor and the chaotic attractor. In theory, the behavior of any system may be
modeled (approximated) using state attractors. The first common type of attractor is the
static attractor, which is a single point to which trajectories approach. A trajectory is
simply a possible path or course leading to an attractor. Once a static attractor is reached,
behavior will not change (remains static) unless the system is otherwise influenced. An
example of this is a marble placed anywhere in a bowl. Eventually the marble will come
to rest at the bottom of the bowl, at a point which can be modeled using a static attractor.
The next type of attractor is the periodic attractor. An illustration of this is given in
Figure 4.1. The dynamics of any attractor is such that system behavior which starts out
sufficiently near the attractor will eventually end up on or near the attractor. In the case
shown in Figure 4.1, the attractor is periodic, and is represented by the circle. Any
behavior which is stable and repetitive can be represented using a periodic attractor. The
behavior of a periodic attractor may, however, be quite complicated before it actually
repeats. This figure, though, does illustrate why oscillators are akin to periodic attractors.
The third type of attractor is the chaotic attractor, which describes complex behavior
which never exactly repeats itself. This is the most complex of the three types of
attractors, and generally the most counterintuitive. Chaos means different things to
different people, so we will provide a more extensive description of chaos later in this
chapter.
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Figure 4.1 The circle represents a periodic attractor.

In general, all state attractors describe the local asymptotic behavior of a system
(Abraham and Shaw, 1989). Here local refers to the behavior of trajectories on or near a
single attractor. Asymptotic refers to trajectories which approach a limit over time. Thus
an attractor is a type of limit set. This definition is restricted in the sense that a state
attractor receives or attracts most of the trajectories, but not necessarily all of them.
Actual behavior is too complicated to describe here. In another abstract sense, of all the
types of limit sets possible, only state attractors are directly observable, for instance, by
way of experiment or mathematical analysis. As it so happens, many of the concepts of
dynamical systems theory are mathematical abstractions which have advanced in
conjunction with advancements in computer simulation techniques.

4.4 Modeling Dynamic Behavior

We would like to begin our discussion on modeling dynamic behavior by briefly
tying in this subject with our perspective on some of the dynamic aspects of intelligent
information processing. As part of normal operation, the brain manipulates the
frequency, phase and amplitude components of signals present. One method used to
represent the activity of these signals is to use pulses. Pulses may be transmitted,
processed and stored in a computational model. Oscillators or periodic attractors may be
used at a higher level of abstraction to represent the functionality of many pulses and
their resulting complex behavior. At an even higher level, coupled oscillators may be
used to represent the behavior of many oscillators as they combine and interact with each
other. Our overall perspective involves a hierarchical structure and a multidisciplined
approach to intelligent information processing in which system behavior draws from
dynamical systems theory, while architectural considerations draw heavily from neural
networks, and higher levels of knowledge representation and understanding draw from
conventional Al. No doubt other disciplines will be needed to help improve existing
theories and to fill in for missing pieces. The bottom line is that fundamental theories
and basic, general ideas are needed to form the common ground on which many
disciplines can stand in order to automate intelligence.

Our approach to modeling dynamic behavior has involved many concepts, some
of which are quite simple and involve common sense, while others may be much more
uncommon and complex. What is really needed, however, is for fundamental concepts to
be identified and brought together in a cohesive fashion. This is a difficult task. Existing
concepts and ideas must be considered, and new ones proposed. For instance, the idea
that waves and linking fields exist with respect to signals oscillating in the brain may
provide insight into automating intelligence. Signal pulses have properties well suited for
operation with oscillators and state attractors. Pulses may be generated in a periodic
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fashion, and the resulting oscillations may create waves or fields of influence. The
dynamic nature of these oscillations may be used to model complex yet powerful signal
interaction. By modeling this kind of interaction more efficiently we may be able to
represent, transmit and process signals more naturally, leading to better techniques for
recognizing patterns embedded in data. These waves and fields have certain interesting
properties. For instance, neural connections constitute one kind of coupling, but waves
and fields introduce another kind of coupling which does not require direct contact.
Coupling can occur due to a region of influence or a field of energy which necessarily
impacts other model components even though they are not directly connected. Doctors
and scientists have long examined the electromagnetic fields and related properties of the
brain, but not enough is known about these effects and how they may be modeled at a
large scale using a computer. Researchers strive for the equivalent of Maxwell’s
equations for the brain, or the so-called “Maxwell’s equations of thought” (Crevier,

1993). .

As part of describing dynamic behavior, we offer a brief description of chaos.
The term chaos is difficult to define, so we hope that our summary does more good than
harm. Chaos is a naturally occurring phenomenon with quite amazing and surprising
characteristics (see, for example, Gleick 1987). Chaos refers to a special kind of order,
although disorder may be more apparent. A system can be in equilibrium and in chaos at
the same time. Chaotic behavior is characteristically nonlinear, but nonlinear behavior is
not always chaotic. In a mathematical sense, chaos is deterministic, but in a practical
sense, chaos is not predictable. Chaos is different from randomness, since chaos is
deterministic yet unpredictable, and inherently shows signs of complex order.
Randomness, on the other hand, implies no order, with the outcome of a single random
event being non- deterministic. However, in an average sense, statistical order may exist
due to many random events, which can lead to predictability. The order in chaos stems
from the very nature of change. There exist physical mechanisms, or laws of nature,
which dictate the properties and characteristics of matter and energy (and information) as
they transition from one form to another. These transitions or transformations contain
order, and chaos is part of that order. The phenomenon is far from being completely
understood, but with respect to modeling, the order appears to be a function of scale. By
this we mean that, as a process undergoes change, the nature of the variations and the
characteristics of change exhibit universal properties of scale. Such scaling properties
include spatial as well as temporal aspects. In modeling, scale is relative. In reality,
everything we understand is relative, depending on scale or perspective. The universal
scaling aspect of chaos stems from the inherent property of having similar ratios among
scales, or similar order within transitions across all scales. Whatever the case, order is
inherent in chaos. This is very important in the development of engineering models,
since we would like to know how our systems will behave over time. Depending upon
the circumstances, we should know that our system may unexpectedly exhibit natural
chaotic behavior. The main point of all this is that chaos exists, and we must know
enough about chaotic behavior if we want to control it’s existence in our systems.
Finally, we have stated that chaotic behavior is unpredictable, and also that with respect
to modeling, scale is relative. This is because prediction of a model’s behavior depends
on, among other things, knowledge of initial conditions. For practical purposes, it is
impossible to specify a unique, exact and consistent set of initial conditions associated
with chaotic behavior. For similar reasons, it is impossible to precisely predict the
behavior of a system when it is operating on or near a chaotic attractor.

The investigation of dynamic behavior seems to reveal more and more mysteries
in nature. We use our limited knowledge to overcome our limited knowledge. How can
this be? Certainly we are not getting something for nothing. We pay for knowledge
through hard work and learning, and we also inherit much from those who have gone
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before us. The basic property of a dynamical system is an underlying process which
involves change. Intelligence and knowledge acquisition can be modeled as such a
process. In our early attempts at doing this, we have learned that there is order in
everything, even in change. Order, harmony, the interaction of forces, transformations --
all of these are directed by the laws of nature. Some of this behavior is readily
understandable, and some is not. Normal behavior refers to regular behavior, or that
which is recognized according to some standard. In the study of complex dynamical
systems, we come to realize that there are too few standards. The phenomena are
difficult to relate to, and many of the concepts are counterintuitive.

In our early attempts to automate intelligence, we search for underlying processes,
examine the nature of change, and imagine the kinds of states that change may ultimately
lead to. Dynamical systems theory offers many fundamental concepts which address
these concerns. From simple iterations to complex processes involving the combination
and interaction of many signals, we can use dynamical systems theory to help us
understand the nature of change. The amount and complexity of dynamic behavior
contained in our model will change over time, but no doubt dynamical systems theory
will contribute much to the modeling of neural behavior. It can be argued that the
understanding and modeling of neural behavior is one of the most extraordinary
undertakings of mankind. This task will require the efforts of many researchers in
seemingly diverse fields of study. Individual goals should be chosen wisely, while
collectively the research efforts of many contribute to the task at hand.
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5. Intelligent Information Processing

The concept of intelligence can be defined or described using various concepts,
each of which may be somewhat difficult to describe. The difficulty in trying to describe
intelligence is offset by our belief that these are inevitable steps to take. We believe that
in order to automate intelligence it is necessary to consider related processes and sub-
processes in order to reveal the basic principles and common functions which underlie
intelligence. The concepts we examine here include knowledge, goals, learning,
decisions, generalization, common sense, and understanding. We even offer a brief
description of our concept of consciousness. Remember that we are not trying to
duplicate the brain but instead try to model some of its processes. The main difference is
that duplication produces an exact copy, while modeling aims to produce a scaled version
of, or useful substitute for, the real thing. Our discussion here is preliminary in nature
and offered only as an introduction.

One of the main purposes of intelligent information processing is to establish the
truth. One definition of truth is this: truth is that which remains unchanged over time, or
stands the test of time. We have already mentioned how data gets transformed into
knowledge in our discussion of the data spectrum. Similarly, the quest for truth involves
the transformation of time-sensitive data into more and more time-insensitive forms (e.g.,
knowledge). Along with these transformations come the possibility of variations (e.g.,
different versions of knowledge). Thus we can imagine our knowledge base as being
subject to change or fluctuations. When something seems stable in our mind, it might
actually be that it is only relatively stable. Furthermore, when something seems stable or
settled, it may be said that it’s activation can ring true, or resonate. Resonance here
describes the strongest signal activity or dominant vibration modes resulting from forces
present at a particular time. We envision this resonance as a possible way to represent
the main points of thought, or perhaps concepts. This resonant activity would depend on
the interaction of input signals with those signals already stored (e.g., knowledge). As for
knowledge being relatively stable (as opposed to being absolutely stable), the dynamics
are such that change and variability are built right into the basic mechanisms of the brain.
We can and often do change our mind. The most general examples of this kind of change
involve learning and forgetting.

5.1 The Quest for Knowledge

We mentioned earlier that one of the main purposes of intelligent information
processing is to try and establish the truth. For the purposes of this report, let us say that
truth is too elusive, so we will settle for the quest for knowledge as part of our goal here.
One definition of knowledge involves understanding what something means. As part of
this simple definition, meaning and understanding are crucial concepts. Both meaning
and understanding require associations. As implied throughout this report, our
impression of intelligent information processing and of knowledge in general depend
upon this concept of associations, which essentially involves relating inputs to outputs.
As data is transformed into more and more useful forms, such as information and
knowledge, signal components are transformed into associations, which can combine to
form concepts. Perception involves activating and recognizing basic associations and
related concepts. The associations and concepts stored in the brain represent reality as
we perceive it, and enable conscious behavior.

Other definitions of knowledge are as follows. Knowledge is organized
information, valuable information, or information that is useful or applicable in a
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particular situation. Knowledge enables a determination and an understanding of what
really matters. We consider knowledge a foundation for intelligence. As such, the term
“knowledge base” seems appropriate. One of the uses of knowledge is to enable the
acquisition of more knowledge. This makes the quest for knowledge an iterative process.
We consider intelligent information processing a dynamic process which produces
something coherent and useful out of a seemingly incoherent mix of signals entering our
brain. We can imagine this as a process which tends toward certainty (that is, the process
reduces uncertainty). But one might wonder how certainty or precision can ever result
from such a dynamic process which feeds off input signals seething with uncertainty and
imperfection. One of the underlying purposes of intelligence is to increase knowledge.
We have already discussed the importance of order in our environment. We must exploit
the inherent order in signals in the treatment of certainty and uncertainty in our model.
We must also compensate for noisy or imperfect input signals.

As part of our quest for knowledge, we can gain insight and learn lessons from
many disciplines such as artificial intelligence, cognitive science and epistemology. For
example, researchers in artificial intelligence have long been interested in developing
ways to represent, process and communicate various forms of knowledge to allow for
computer-based reasoning. Many researchers have emphasized formal principles of
reasoning and logic to better understand and encode the essence of knowledge in their
programs. However, a lesson can be learned from formal methods, and that is not to
place too much emphasis on form alone. Formal methods certainly have their place in
math and science, but with respect to intelligent information processing, formal methods
have not sufficiently supported the treatment of meaning along with the importance of
form. The realization of what a concept means in an appropriate context is a crucial
aspect of intelligence. We need to develop automated methods which can identify main
points (of communication) with respect to intelligent information processing, and also be
able to interpret the meaning of those main points in appropriate contexts.

From a neurobiological point of view, the quest for knowledge leads to different
aspects of intelligence, for example neural development (Kandel and Schwartz, 1985).
Normal neural development assumes a healthy brain working inside a healthy body.
However, not so obvious but perhaps just as important as hardware is the software aspect
of normal development, starting with signals entering the brain. By virtue of
environment, neural input or stimulation is defined, and is widely believed to be an
important part of neural development. What the brain does with these input signals is the
brain’s business, but this business has a direct impact on development. We believe that
the amount of neural stimulation, and the nature of it as well, are a function of the brain’s
developmental stage. This means that, for normal development, certain kinds of input are
more appropriate at certain stages than they are at others. For example, simple repetition
seems to play a key role in early neural development. Later in life, however, the affects
of repetition seem somewhat diminished, and sometimes even disturbing. Perhaps this is
due to the discriminating qualities which come with development and higher levels of
consciousness.

5.2 Consciousness

Consciousness is a contemporary product of capable minds. It is a function of
gray matter, so to speak. Unlike knowledge or other forms of intelligence, consciousness
is transient in nature. It is not passed on from generation to generation, as far as we can
tell. Consciousness is what matters now, and is a characteristic property of the living.
This property involves intelligence, thinking, awareness, attention, perception,
observation, concentration and communication with respect to self, among other things,
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and how one’s self interacts with the environment. We do not anticipate or expect
machines to ever have the kind of consciousness we humans experience. However, in
time we do expect certain aspects of consciousness and intelligence to exist in computers.
Time will tell which ones are needed, and which ones are even possible.

In Chapter 4 we implied that an oscillation is a form of resonance among dynamic
signals. Considering the brain and intelligence, the environment may be such that
oscillations and resonance are natural ways to represent and process changing data.
Concepts such as resonance and harmony may be useful in helping us to better
understand intelligence and even consciousness. Dynamic interaction and interference of
signals using resonant modes and oscillations may lead to possible ways to describe and
model some of the mechanisms of intelligent information processing. Again, it is not our
goal to duplicate the real thing, but only to model portions of it. We may use the
trajectory of a so-called resonant concept as a way to describe and model dynamic
intelligent behavior. The trajectory may provide a direction, or a feasible path, and a
phase portrait may show many possible paths, and perhaps lead to something equivalent
to a “stream of consciousness.”

There is much mystery concerning the mind, intelligence and consciousness.
These are admittedly sensitive subjects, especially when considered in light of computer
modeling and simulation. We do not want to mislead you to think that we propose
imbedding consciousness in our model. We examine consciousness to gain insight into
some of the mechanisms of intelligence. In order to better understand these mechanisms,
we consider such things as order and organization, information and data, transitions and
transformation, dynamics and consciousness. All of these must be considered when
trying to automate intelligence. By doing this we may develop useful concepts and ideas
for better models. We do not ever expect to completely understand the brain’s
mechanisms, but we may be able to model important aspects. If we can imitate any
useful aspects of consciousness, in terms of modeling and simulation, then we will be
doing well.

With those words of caution, we now summarize our impressions of conscious-
ness. Consciousness is a dynamic process in which thoughts are produced from a series
of concept activations within the brain. Concepts are groups of associations, or input-
output mappings, which form within the neural structure. Associations may be modeled
in the form of adjustable weights (synapses) which connect processing elements
(neurons) in complex ways. In the brain, input signals get combined, processed and
filtered at various regions and layers to produce relatively few outputs compared to the
amount of signal activity occurring. These outputs contribute to thought. Consciousness
involves complex signal activity, or so-called associations, occurring at the highest levels
of the brain. We mean highest in the conceptual or functional sense, not necessarily the
highest physical sense or outermost layers (i.e., cerebral cortex). Awareness is a high
level function which results from a sense of heightened interest in certain kinds of signal
activity. Awareness involves a general increase in associations over a wide range of
~signals. Attention involves a more specific interest in signal associations at finer levels,
thus serving to focus awareness.

Consciousness involves many signals coming from and interacting in various
regions of the brain. Signals get combined and processed based on previous neural
development and on forces present. The development of the brain is very dynamic,
leading to the fact that each brain, while similar in some ways, is a unique system of
complex processing power. The brain's processes are considered to consist of many sub-
processes. For example, the brain must be able to reduce many signals down to a few to
be efficient. One such sub-process, the decision-making process, is able to produce a
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single response based on whatever signal activity is present within a certain level of detail
(i.e., within a certain scale). The need for a single response or decision is similar to why
we call on a single judge or arbiter to resolve important issues. A single decision
authority is literally the simplest, and often the most efficient, way to resolve an issue.
Having more than one judge adds complexity, ultimately requiring a single arbitration
process to resolve any remaining discrepancies. Perhaps the existence of such an
arbitration process in the brain is balanced by its inherent generalization abilities. The
brain represents the ultimate tradeoff machine since it can take many specific inputs and
generate general outputs, while it can also take general inputs and produce specific
outputs. This ability to trade off between general and specific concepts, and to reduce
many inputs to a few outputs in an orderly fashion, is no simple feat. Consciousness
depends on these processes.

Another aspect of consciousness has to do with energy considerations. Conscious
activity is believed to consume a large amount of energy relative to the total amount of
energy consumed by the brain. Consciousness can be described as heightened mental
activity. While the body must maintain the overall harmony and balance of very many
systems or processes, the brain must control its sub-processes. One such sub-process is
consciousness. The location of heightened mental activity in the brain is believed to
move around in the neural structure. At any one time, the extent of total activity defines
the current “state of mind,” at least in a physical sense. Consciousness may involve the
highest levels of mental activity (e.g., sequential resonance), but we do acknowledge that
much activity is also going on in the background, so to speak.

The brain is able to process many signals at one time. Incoming signals and those
stored in the brain can interact in many ways. In order to “make sense” of them all, the
brain uses efficient processes to resolve all the signal interactions. Consciousness is one
result of these processes occurring in normal waking moments. Consciousness
necessarily involves the focusing of energy to produce associations and concepts within
the brain. Cognitive development involves controlling which concepts get activated and
which associations get stored over time (i.e., where the energy is to be “focused”).
Mental energy shifts among the many regions of the brain, depending upon neural
structure and signal activity. Output patterns are associations of input patterns. These
output patterns trigger other thought patterns, allowing the process to continue in an
iterative fashion. Due to physical restrictions, the overall process must allow only a
relatively few regions of the brain to be “activated” at any one time. These relatively few
regions output even fewer signals. This focusing and filtering is an essential part of the
process. The “strongest” signals remaining (i.e., those resonating at this high level) at
any given time are believed to constitute or contribute to conscious thought.

5.3 Goals

A goal is a desired end state, one which usually takes much time and effort to
achieve. With respect to intelligence, mechanisms must exist which enable the creation
and achievement of goals. Once a goal is established, methods must exist which enable
us to work toward that goal in an orderly fashion. What could this be? How can we
model the concept of a goal, and the processes needed to achieve that goal? Perhaps a
goal is a bunch of decisions, and the combination of those particular decisions results in a
particular goal whose nature is dictated by the nature of those decisions. Or perhaps a
goal is a state attractor, with trajectories serving as paths which lead to that goal. In a
physical sense, a state attractor helps organize, control and maintain a balance of forces
present (i.e., establish harmony or local equilibrium). Similarly, a goal helps organize
thoughts, make decisions and, in general, sort out the prevailing mental activity. This
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requires a balancing act of existing forces, along with whatever impact or tendencies
these forces may involve. We know that orderly mechanisms must exist in the brain
which reduce many signals or priorities down to a smaller, more reasonable amount. The
resulting harmony or resonance, which involves goal-oriented behavior, could be thought
of as a form of dynamic equilibrium.

Let us consider a little further how goals may be achieved in light of what we
know from dynamical systems theory. It is difficult to imagine how goals are physically
established or embodied in the brain. But other aspects of goals are also intriguing. For
example, for any given goal, how does one come to know what to do to achieve that
goal? This is especially mysterious for longer term or difficult goals where no clear path
exists regarding how to achieve them. The goal-reaching process must be dynamic.
Consider the case where only parts of the process are known, such as performing a task
for the first time, solving a riddle, or wanting to go somewhere but having only sparse
directions. In each case, you must fill in for missing pieces. In order to do this, you may
complete the process by breaking it down into more manageable pieces. Ideally each
piece will result in a more understandable situation. In breaking the process down,
mental sub-processes are activated, many of which have probably been used before in
other similar situations. This implies that certain aspects of these sub-processes are
generic and handled in a similar fashion no matter what the circumstances are. For
example, appropriate references and ranges must exist to help keep the entire process on
track. The dynamical systems concept of a trajectory represents a path of behavior which
leads to a stable state, or a so-called state attractor. In a similar sense, a goal can
conceptually be considered a state attractor. Also, statistical tools may be helpful in
addressing the issues of reference and range associated with a concept. The data
spectrum and the octave rule may provide additional ideas on how to model goals.

Another important aspect of goals has to do with the concept of time. Goals are a
function of time -- that is, they are affected by time. Depending on what you are trying to
do, at any given time, your actions and thoughts are influenced by your goals. Short term
goals, as well as long term goals, exist. For instance, expectations may be considered
short term goals. What we expect in the short term is an example of how our perception
of goals and time come together. The decision process often involves trading off
between long and short term aspects of an issue, illustrating the importance of time with
respect to goals. The dependence on time also implies that in order to help reach a goal,
we may break it down into sub-goals, or smaller increments of time. The important point
of all this is that complex processes exist which allow us to create and achieve goals. In
order to model these processes, we must come up with appropriate and useful ways to
represent the functionality of goals.

5.4 Decisions

One of the main features of intelligent information processing is the ability to
make decisions. This ability helps define our purpose, our very being. Decisions drive
our actions and help define our goals. While each one of us may not be consistent with
all of our decisions, it may very well be that our beliefs and our state of mind hinge upon
how well we try. Decisions are required when we must choose among different
alternatives. At any given time, our state of mind defines our thoughts, our priorities and
our goals. While our conscious activities march onward, the mechanisms which enable
us to make decisions work (both in the foreground and the background) to support our
needs and our wishes. These mechanisms are so ingrained in our brain that they can and
often do operate immediately, automatically. Our ability to make decisions is
fundamental to our existence.
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Decisions ought to be made at the proper level or scale. One difficulty with this is
trying to decide what is proper for a given situation. This illustrates an iterative feature
built into the decision-making process, with one decision affecting another. As we have
mentioned, the issue of scale is critical in the decision-making process. The issue of
scale can be applied to just about any concept, making scale a universal property. In a
general sense, scale is a proportion, a framework or a relative measure. When we say
decisions ought to be made at the proper scale, we are saying a lot. This is because any
scaleable factor can affect the outcome of a decision, and all factors are scaleable. For
any particular decision, the issue of scale would depend on relevant goals, associations
and previously made decisions. Considering the many associations involved in a concept
and the cumulative effect of making decisions based on many related concepts, we see
that the decision-making process is quite involved.

Since the decision-making process involves scaling mechanisms, there must be
links between the different scales or levels involved. Or there must be orderly transition
mechanisms which maintain the inherent order and organization present at each level or
scale. We envision the octave rule and the data spectrum as aides to understanding such
mechanisms. The concept of scale may be used as a modeling construct which helps
define the boundary of forces acting upon various forms of knowledge at any given time.
The decision process must deal with boundaries and scales, and evaluate appropriate
associations and relationships. These mechanisms feed into our ability to draw intelligent
conclusions from available knowledge. Relevant factors must be considered, ultimately
in the form of positive and negative forces, and tradeoffs must be evaluated. We know
that in general these processes are less than perfect. In practice, a lot of variability is
built into them. In any event, we try to automate these processes in some form or
another. Of course our automated versions will be different from the biological versions,
but the important point is that we ought to be able to automate these processes and apply
them to useful and important problems.

The decision process involves considering significant aspects of a concept within
an appropriate context. That is, many associations which comprise a concept, or many
thoughts which come to mind while making a decision, are evaluated with respect to a
context or range. Granted, the many associations and their so-called ranges all have
dynamic aspects to them. But in general, a concept is decided upon within the bounds of
a particular context. We have stated that a concept is composed of many associations.
The statistical nature of underlying mechanisms implies that statistics and other branches
of math will provide useful modeling approaches. Also, the decision-making process
seems to involve mental activity occurring at many levels or different states of
consciousness. This implies that we search for scaleable processes, ones which are based
on something solid. Often we cannot state our thoughts well enough or explain our
decisions, yet we feel confident enough that they are right or well-founded. We search
for such an elusive foundation.

5.5 Learning

The ability to learn is one of the most significant aspects of intelligence.
Intelligence is a process which tries to make sense out of the world. As the brain senses
the many signals entering and being activated within, it tries to map them into its
knowledge base. This involves learning, with new associations being formed and
existing ones being modified. Order and consistency (harmony) are essential for efficient
learning. As mentioned earlier, during the learning process data is transformed into
information on its way toward knowledge. The learning process produces new signals
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which contain something not present in the original (entering) signals. That is, new
signals form which contain significant components or cumulative effects of the input
signals. The resulting signals are not merely the sum of the individual inputs. Depending
on the situation, the resulting signals may very well be more significant than the simple
or linear combination of all the inputs. Whatever the case, the process results in fewer
signal components. Whether or not the resulting signals are more significant than the
inputs depends on the circumstances. But the bottom line is that the overall process
produces signals having significant content or meaning, and these relevant signals can be
learned, along with their supporting associations.

In the process of learning, we try to “understand” the meaning of new signals as
they become activated in our brain. This understanding ultimately involves signal
interaction. New signals (or newly activated signals) interact with existing signals (i.e.,
the knowledge base). This activation and interaction triggers learning. Whether done
consciously or sub-consciously, learning requires an open mind. The mind cannot learn
without being open or exposed to new signals (i.e., change). In this context, an open
mind means that, for whatever reasons, new ideas may be considered and incorporated
into the knowledge base. As for determining the meaning of activated signals, the
processes involved are still unknown. We have ideas on how to approach modeling these
processes, many of which are mentioned in this report. We believe that one of the keys
to this is being able to identify reference concepts within appropriate contexts (ranges).
This involves being able to store and recall relevant associations based on existing signal
activity.

Learning means to gain knowledge or understanding. It also implies the ability to
realize cause and effect relationships. Learning may also be defined as lasting change
toward improved performance resulting from experience (Yaworsky and Vaccaro, 1993).
In any event, learning involves change. With respect to intelligence, that change has a
purpose, which is essentially what a goal is. Close ties exist between goals and decisions.
As part of the decision-making process, for instance, signals get settled and stored. This
results not only in the making of a decision but also in the many associations which
support, or are otherwise related to, that decision. The resulting associations constitute
that which is learned. Goals, decisions and learning are very closely related sub-
processes which support intelligent behavior.

The learning process is used by the brain as it continuously deals with change.
Because of the tremendous amount of change present or possible in natural signal
activity, the learning process must somehow exploit differences. We talked briefly about
this earlier in our description of the octave rule. The overall process must not only take
into account signal differences but also similarities as well. As signals get filtered and
focused into many kinds of classes and categories, as surely must be the case, finer and
finer differences become exposed within the bounds of these classes and categories.
Together fine scale differences as well as general similarities must be used in the
interference process, allowing any level of detail, from general to specific, to be focused
on. Within any (general) class, thresholds must exist which rely on signal differences
that help distinguish specific instances from general categories. The main point is that
basic processes which exploit signal similarities and differences are essential to the
learning process. Some of these processes exploit signal differences, from large to small,
while others make use of signal similarities.

Reinforcement and consistent behavior are also important factors in learning.
Reinforcement can be positive or negative, depending on the circumstances. Consistent
behavior is believed to be a contributing factor to harmony. Neural development seems
to be most efficient when exposed to orderly and consistent behavior of a particular kind.
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An example of this is how we choose what we are interested in. Our interests depend
largely on our past experiences. Consistent behavior reinforces associations, becoming
part of our experience. These associations and experiences, in turn, tend to reinforce our
interests, creating an iterative process. As such, the feedback we receive each time we
perform similar behavior provides the reinforcement needed to improve that behavior.
Again, the processes are inter-related. By pursuing interests, knowledge accumulates,
which contributes to the overall order and organization within the brain.

5.6 Generalization

In the field of neural networks, generalization means that a network can provide
an appropriate response to novel inputs. This means that the network can produce an
appropriate output given unique or new inputs. The network does this by making
associations (input-output mappings) similar to those activated by the novel input.
Another definition of generalization is to reduce many associations or concepts down to a
few. In doing this, the few (outputs) become the synthesis of the many (inputs). The
resulting associations or concepts actually signify trends or tendencies of the input
signals. Similarly, generalization can involve taking specific associations or concepts
and forming more global or significant ones from them. An overriding feature of
generalization is the ability to produce the most appropriate or efficient output for a given
set of inputs.

The ability to generalize is an important part of intelligence, one which we tend to
take for granted. This ability is powerful, useful and, for the most part, inevitable. In one
sense we generalize in order to deal with the vast amount of data entering our brain. We
also generalize in order to deal with imperfect data, be it noisy, missing pieces, or
otherwise inappropriate. Our ability to generalize is continuously used, and often
misused. It is difficult to generalize well. Just as generalization is an important part of
intelligent information processing, so is the handling of specific details. We have already
mentioned how the brain is the ultimate tradeoff machine when it comes to generalizing
and specializing with the various forms of data present. We can memorize and analyze
specific signal components, and we can also generalize from them. Exactly what we do
must depend on our goals and priorities, and is a complex function of scale. This is one
example of how goals, decisions and other mental processes are inter-related.

In theory, one might expect that the products of generalization shouldn’t change
very much or very often. Generalizations may be modified or refocused, but they should
be fairly stable, serving as a foundation for other mental processes, such as dealing with
specific details or other transient signal components. Specific details may matter very
much at any moment in time, but general concepts or issues tend to matter more in the
long run. It is interesting to consider how specific details feed general concepts. By
definition the process of generalization proceeds from many specific details to fewer
general ideas or concepts. Generalizations are difficult to confirm or support because
they usually represent so many different associations, concepts and thoughts. Trying to
explain which of these is most important can lead to very subjective results. However, so
much goes into the formation of generalizations that they are difficult to ignore. Of
course, it helps if the generalizations are appropriate, but they do not exactly come
labeled as such. Many times we have difficulty relating to someone because they
generalize differently. Each person has a different set of associations and experiences to
draw from, and they may even use different mechanisms for generalizing, making
communication and understanding difficult at times.
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The brain must be able to deal with many timely and specific signals in an
appropriate fashion. A natural process must occur which transforms timely signals into
less timely, or less time-sensitive, ones. Also, specific signals may need to take on a
more general nature in order to be dealt with appropriately. We may memorize or
otherwise have to deal with specific instances or items, but at the same time these feed
into our generalization mechanisms. Associations which form in the brain tend to take on
a general or relative nature. One result of the process is that reality is transformed into a
relative version (a model), one whose products and processes depend in part on the
current state of mind. One purpose of a model is to generalize and abstract. This is
difficult to do well. As part of generalizing, signals must be reduced, specific instances
must be translated into general concepts, and main points must be identified in order to
generate appropriate responses to novel inputs.

Earlier in this report we presented the concept of the data spectrum, which
portrays intelligence as a process which transforms data into more useful forms, such as
information and knowledge. As part of the spectrum (see Figure 2.1a), the most complex
and abstract forms of data exist on the left side of the spectrum, and the more
fundamental and basic forms reside at the core. This implies several things. First, high
frequency components of data (those changing very often) must be filtered and focused in
order to transition to the lower frequency components on the left side of the spectrum.
Also, as more and more signals combine to form complex or abstract concepts, some kind
of orderly reduction has to take place, resulting in fewer signal components which are
more significant. As part of the transformation process, the resulting signal components
naturally have lower frequencies than the original components. And finally, in order for
signals to make it to the center or core of the spectrum, they have to be basic and
fundamental. Due to the tremendous amount of signal interaction which takes place at
the core of the spectrum, signal components here must satisfy very many physical
constraints. Regardless of their source, all signals here are subject to interference and
transformations which result in basic, common signal components. This is an example of
how order is naturally exploited in the overall process. The data spectrum portrays the
ability to generalize as one moves from right to left in the spectrum, and it also indicates
that common sense is approached as one moves toward the center of the spectrum, where
many diverse signal components must combine in a common fashion. We will talk more
about common sense and how it relates to the ability to generalize shortly.

The brain’s ability to generalize may be a scaled up version of what each
individual neuron does. That is, the job of each neuron is to take many inputs and
combine them in some complex fashion, synthesizing an output which is representative
of the particular inputs processed. Similarly, the brain generalizes by taking many inputs
and combining them in a complex fashion. Exactly how many inputs, neurons and layers
are needed to allow generalization for a given task or problem is not known. But it is
interesting to wonder if the ability to generalize is the result of the activity of just a few
interconnected neurons. Another interesting note about generalizing is that if we use the
wrong inputs or somehow misuse the process, we may very well be misied by the results
(our generalizations). It is easy to generalize, but it is much more difficult to generalize
correctly. No doubt time, energy and concentration are contributing factors to the
generalization process. It is also interesting to consider whether general concepts or
specific details are more important as part of the trade-off process. Unfortunately for
modeling purposes, the answer must depend on circumstances (i.e., meanings within
contexts).
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5.7 Common Sense

By definition, common sense is basic consensus or general agreement among two
or more people. The implied basis for this consensus is common understanding of sensed
signals. Common sense implies that the inherent message or meaning of sensed signals is
shared. The message or meaning consists of associations, and common sense is based on
common associations built up over time. The associations are usually related to common
or natural phenomena, and not highly dependent upon complex or advanced levels of
understanding. In order for signals (signal components) to be in common, they typically
reflect basic principles, and usually represent generally accepted concepts. Thus
common sense refers to a level of understanding which is (or may become) common
among many people.

Sensory data is very important to our existence, at least from an intelligence point
of view. The brain naturally becomes dependent upon sensory forms of data. Once we
become used to receiving a certain kind of sensory data, the lack of it may lead to
psychological problems (Caudill and Butler, 1990). If a source of data is removed, the
brain must adjust or compensate for it, which may lead to much difficulty. A positive
aspect of sensory data is that it can be used to help relax an overworked or confused
mind. For example, one way to relax is to “come to your senses” by exercising or
looking into the distance. This usually helps shift mental activity into a more relaxing
state. Finally, our senses are an essential part of our intelligence, enabling such things as
communication and perception.

Common sense is an artifact of signal interaction. Common sense implies
common signals and common mental processes. The signals have a regularity about
them, and the processes involved tend to be basic and natural. Regularly occurring
signals may “sink in” and appear to be basic or common. Or signals entering the brain
may be in common with those already stored. Both of these situations result in the
reinforcement of common associations. The resulting condition is that external signals
have something “in common” with internal signals. One of the difficulties within the
field of artificial intelligence involves linking external communication and (high level)
cognitive processes with lower level processes which must exist in an underlying (neural)
network.

In general, common sense is a function of neural development. For the most part,
young children do not have what it takes (the means) to experience common sense. This
is because they have not yet formed the associations needed to support common sense. In
time these associations build up, forming what turns out to be a foundation common to
many (similarly experienced) people. Very young children tend to perceive or
experience things as being absolute. Their first impressions may very well be
memorized, becoming a “matter of fact.” They do not easily understand generalizations
or abstract concepts. The more they are exposed to them, however, the more they will
learn from them. With neural development comes the ability to distinguish unique
circumstances from common ones, and the ability to differentiate between specific facts
and general concepts.

Communication relies very much on common knowledge between sender and
receiver. We do not usually communicate by exchanging the full extent of a message,
such as starting with background information, explicitly stating all the main points and
then supporting all of them with relevant information. Instead we usually take many
short-cuts. We may assume that our audience already knows much of what we are
talking about. Or we may offer to a conversation that which we assume others do not yet
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know. When we discuss issues that we mostly agree upon, we may merely wish to
reinforce our mutual thoughts. In any event, we communicate in order to get our points
across, to answer questions, or to question others. With the goal of communication to
enable better understanding, or to make our understanding common to others,
communication is truly an amazing interaction of signals. We often have high
expectations of the communication process in the sense that we expect so much from our
audience. All too often we assume that they understand what we are talking about.
Sometimes they don’t. Sometimes they understand a particular subject more than we do.
We have mentioned that there is the real world, and then there is our perception of the
world. To each of us, our perception is reality. What we sense, what we think, our
attitude, our understanding, our mental images, our consciousness -- all of these are what
really matter to us. But we must remember that we are dealing with a model here.
Others have a different model. What matters to us often does not matter to others. When
models are very different, communication can break down. We ought to be aware of that
which may be common to others and that which is particular to our understanding.

Common sense is related to the ability to organize many (specific) signals into
more basic (general) concepts. That is, common sense is related to the ability to
generalize. But there are differences also. With common sense, concepts are usually
basic, natural and simple to understand. The concepts also tend to be common among
many people. With generalization, however, concepts may be quite complex, and each
person probably generalizes differently. Generalizations are dependent on the mental
abilities of a particular individual. The reference used for generalization and common
sense is also different. The implied reference in generalization is self, with its unique
perspective and particular set of associations. On the other hand, the reference in
common sense is many people. Common sense refers to signals or concepts understood
by many. Thus common sense is a form of generalization among many people. As such,
in order to be “common” among many people, common sense relies on the existence of
simple concepts and the interaction of basic, sensory signals. Only the most basic signal
components are likely to be in common among many different people. Generalizations,
on the other hand, tend to be more subjective, since they represent an individual’s unique
collection of relevant associations and concepts.

5.8 Intelligence and Understanding

We have defined intelligence as the ability to acquire knowledge and effectively
apply that knowledge in a changing environment. The acquisition of knowledge involves
learning, and the application of that knowledge requires goals. Along with gaining
knowledge, learning also implies understanding, or the ability to realize the meaning or
significance of that which is learned. Understanding is a foundation, something solid
upon which thoughts and ideas (signals) can build. The decision-making process is
another important component of intelligent behavior. Only through conscious choice and
the consideration of relevant trade-off factors can intelligence be realized.

We have mentioned some of the processes of intelligence, such as setting goals,
establishing priorities, evaluating tradeoffs, and making decisions using various forms of
data. Other processes involve generalizations, logic and common sense. Each process
involves learning necessary associations. Each of the processes may work independently,
but more than likely they work in conjunction with each other. As part of the natural
interaction of sub-processes which takes place, orderly mechanisms must exist which
control the transformation, feedback, scaling and communication of data in its many
forms. The underlying processes, using signals as the raw material, are headed
somewhere. They all produce something. That product is intelligence.
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As part of intelligent information processing, understanding involves trying to
establish truths (or partial truths). The ultimate goal is to ascertain absolute truth as
opposed to apparent truth. In reality, however, understanding is a relative notion which
depends on one’s perception, intelligence and knowledge of a particular subject or
situation. Perception, intelligence and knowledge, however, are the result of imperfect
processes. That is, we as humans are not perfect, and it is difficult for us to come to know
the absolute truth. From a lower level standpoint, understanding involves the “sinking
in” or “settling down” of signals (to stable states within a network). These signals
produce associations, which comprise concepts and other cognitive products.
Understanding involves being able to grasp the significance of concepts and realize their
consequences. This realization naturally involves the consideration of cause-and-effect
relationships observed by the senses and activated within the mind.

Some of the products of higher forms of intelligence include language,
imagination and creativity. Our job of modeling the brain and automating intelligence
involves emulating some of these higher level functions. This implies that we should
take clues from the architecture and operation of the brain. Many disciplines have done
just that, such as artificial intelligence and neural networks. As we develop a better
understanding of the processes of intelligence, at the same time we slowly progress
toward having machines which can achieve certain levels of understanding and
intelligence.

Earlier in this report we used the term data to describe input signals. These
signals are often imperfect in some way, either due to noise, missing pieces, or some
other relative imperfection due to the nature of their source or transmission. We as
intelligent beings must try to make sense out of the multitude of signals entering and
being processed in our brain. We have to determine what really matters. This requires
knowledge, which exists in various forms. We must be able to identify significant
components of knowledge, which corresponds to relevant and important signal activity.
We must be able to know the meaning of this signal activity with respect to some
reference or context in order for comprehension and understanding to occur. We know
that these processes are dynamic and depend heavily on a knowledge base and the ability
to apply that knowledge base in a changing environment to achieve important goals.

We have talked about intelligence in many different ways throughout this report.
Obviously there are many ways to describe this complex phenomena. And certainly,
further understanding is needed. However, intelligent information processing is crucial
to our existence. And more germane to this report is the fact that computers already do
so much information processing for us. It is only a matter of time before they do so
intelligently, or at least in a more intelligent fashion. Since this kind of computer
evolution is inevitable, we feel it is necessary to begin describing fundamental aspects of
intelligent information processing. Over time, better descriptions will evolve, leading to
a better understanding of the overall process. Many of our initial ideas will turn out to be
incorrect or misguided. But we must start with basic principles. In this report we offer
ideas on what these principles may involve. We discuss some complex concepts, but
more often than not they are merely the combination of many simple ideas.

5.9 The Importance of Time, Scale and Form

Time, scale and form are closely related aspects of a crucial process. The process
we are discussing involves intelligence and the intelligent processing of information.
This process converts raw signals (data) into something more useful and meaningful, as
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described earlier using such concepts as the data spectrum and the nature of data. As a
result of the overall process, data is transformed, or changed from one form to another.
Obviously form is important. We have also described the octave rule as a filtering or
focusing process, one which involves the orderly scaling of signal components as they
combine and interact in a complex fashion. Thus scale is important. And we have seen
how time is built into all forms of data. The data spectrum portrays a process which
involves time-sensitive data, less time-sensitive information, and even less time-sensitive
knowledge. The entire transformation process is a function of time. Thus the aspects of
time, scale and form are important, and virtually inseparable. They contribute to order.
We all know of situations where, depending on what you are doing, everything has to be
just right. One example is how time, scale and form all contribute to what we call
perspective. A perspective is a point of view, with the point being a kind of reference,
and the view depending upon scale, among other things. Scale can be a proportion,
range, dimension or limit. What really matters, though, is that mechanisms exists which
create such things as perspective, and no doubt time, scale and form are important aspects
of such mechanisms.

In the physical world, the laws of physics (natural laws) rule. In the mental
world, so to speak, consciousness rules. We do not understand the natural laws which
apply to consciousness. Thus when we say consciousness rules, we imply that the mental
processes of consciousness dictate what really matters to us (within the constraints of
natural law, of course) at any given time. What we are thinking, what we hold to be true,
and our current state of mind constitute our model of the real world. The model is ideally
an accurate (scaled) version of the truth. All too often, however, the model is riddled
with incorrect or inappropriate information. The result is a major component of what
constitutes human error. The point here, however, is that our model (our consciousness)
is a function of time, scale and form.

In our chapter on dynamics, we mentioned how order appears to be a function of
scale. When a process undergoes change, our understanding of the characteristic
properties of change and the inherent nature of variations depend on scale. We have also
mentioned that in the physical world, the laws of physics take care of themselves, so to
speak. What this means is that, in nature, scale is not so much an issue. It is only in
modeling the physical world that scale becomes a critical factor. Modelers must
(explicitly) decide which scale or scales are relevant. In an abstract sense, scale can be
just about anything, making it relative. But in a practical sense, scale depends on what
you are trying to do and on the purpose of your model. Accuracy is important with
respect to modeling, and accuracy is a function of scale.

The octave rule was described earlier as a function of scale. The octave rule
involves the orderly filtering and focusing of signals into relevant groups and ranges. We
believe these orderly processes contribute to awareness and attention at higher levels, and
provide other support mechanisms at lower levels. The octave rule helps manage and
control the orderly reduction of many signals to fewer, more significant ones. The octave
rule must then allow the grouping of remaining signals according to class or type.
Groups are made up of signals with similar components. As a result of the focusing and
filtering that has already occurred, signals in similar groups have relatively small
differences between signal components. This is important because mechanisms which
make use of signal differences must rely on magnitude, but at the same time magnitude is
a by-product of scale. The lower level mechanisms needed to support intetligence may
turn out to be relatively simple. At a higher level, the octave rule and other generic
processes contribute to reasoning and other cognitive functions. Many processes
contribute to the orderly arrangement of signals across many levels, from cognition down
to the more basic functions. Much activity is going on in the brain at any given time,
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with short term and long term consequences and effects at many different scales. All of
this processing produces information in its various forms. The bottom line is that time,
scale and form are fundamental aspects of intelligence.

We know that the transformations and processes of the brain are all a function of
time, but we still don’t know exactly how to incorporate time in our model. We have
alluded to the fact that one of the products of intelligent information processing is a time-
insensitive version of sensory input. We would like to point out here that the timing
mechanisms of the brain may be quite different from the normal concept of time, such as
that which is portrayed or perceived by the movement of a clock. That is, the intricacies
of the brain may operate on timing principles which we cannot (yet) perceive or
comprehend (see, for example, Penrose 1989). This may involve signals whose
frequencies are not detectable by our senses, or perhaps it involves signals we can detect
but, for whatever reason, do not know how to process (consciously) in an efficient
manner. The transformations and processes occurring in the brain are extremely
complex, and may involve spatial, temporal and frequency aspects so different from what
we are accustomed to that we can hardly describe them. Physicists and mathematicians
may provide us with useful transformations, but we will have to better understand the
nature of underlying phenomena in order to adequately model their processes.
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6. On Automating Intelligent Information Processing

We have discussed various aspects of intelligent information processing in this
report. Now we will address how we might automate some of these functions. We will
not (cannot) provide a detailed description, but instead offer general ideas on how to
begin modeling intelligence. One of the main purposes of intelligent information
processing is to integrate and coordinate signal activity within a network (brain) in order
to harbor intelligence. As such the brain is a machine. The inputs to the machine are
signals. These signals are detected by various senses and transmitted to the brain, or they
are generated from within the brain itself. The outputs from the machine are signals
which somehow constitute intelligence. Exactly how intelligence is produced is not
known, but we believe that certain aspects of intelligence may be modeled using various
computerized techniques. Very many different approaches have been taken over the
years in attempts to automate intelligence. In fact, so much work has been done thus far
in so many disciplines that it is virtually impossible to comprehend and appreciate the
magnitude of it all. We must struggle to put together significant components of basic
theories as we try to develop useful, efficient models.

Our approach to automating intelligence, as described here, may appear relatively
simple. Granted, we have provided only a general, introductory description. Complex
details involving advanced mathematical techniques and the latest developments in
neural-based technologies must also be worked on. But no matter if general concepts or
specific details are worked on, a more solid foundation is needed. By concentrating on
general principles and searching for simple processes, and especially by considering
intelligent information processing a process, we have been able to focus on various
aspects of the process that would otherwise be difficult to see. As part of human nature,
many aspects of intelligence may become second nature to us. That is, underlying
processes tend to get ignored, or at least taken for granted. These underlying processes
ultimately involve the manipulation of basic signal components and the transformation of
these components into more advanced forms, such as thought, language and imagination.
We know that we will not be able to understand the entire process, but we believe we will
be able to model portions of the process as time goes on. Due to unavoidable limitations,
our models will necessarily be subject to change, and forced to evolve. We realize that
neither a top-down nor bottom-up approach to automating intelligence will suffice by
itself. We must be open to many ideas, as surely many ideas will be needed.

As used here, the term automation refers to a computer carrying out well defined
operations as specified by a program. The program is based on some form of logic. This
is somewhat ironic because the program in biological neurons is not based on logic per se
but on underlying processes which, when combined, may be used to comprise a logic.
The logic on which the human program is based is not known to us, and may never be.
What this implies is that modeling approaches which do not accept this fact (that
something fundamental is missing now) may be doomed. We must try to build our
models on something solid. That foundation, that understanding, has eluded us thus far.
We do not understand intelligence well enough to be able to program it outright.

Many people believe that we will never be able to automate intelligence. We
must be clear about our purpose here. We are not out to automate intelligence per se. In
fact, if we can model any significant part of intelligence, then we consider that progress.
Benefits will be gained in many disciplines by the automation of intelligence. On one
hand, we may work towards the lofty goal of automating intelligence, knowing full well
that we will not completely reach our goal, but also knowing that we will gain much in
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the process. On the other hand, if we do not even try to automate intelligence, then we
will get nowhere and learn nothing, never realizing the tremendous potential before us.
We expect that machines will never completely duplicate human intelligence. If we are
to try at all, then we must be cognizant of our ultimate goal, and carefully consider the
“direction and path of our work.” The very essence of intelligence and consciousness
begs that we investigate their underlying mechanisms. A natural “next step,” so to speak,
would be to “automate” those mechanisms. This endeavor should not be taken lightly,
however. We provide some words of caution with respect to automating intelligence at
the end of this chapter.

The basic function of a computer program is to map a set of input signals to
output signals in a meaningful way (note that each neuron performs a similar function at
a much lower level). Traditionally, the meaning in a computer program is carefully
identified during the programming process. The program itself is usually quite rigid,
with little or no adaptation or learning built in. However, unless the program
incorporates learning, then it will never truly exhibit intelligence. Clever programs may
give the appearance of being intelligent, but more often than not programmers would be
hard-pressed to defend such a claim. Attempts to automate intelligent information
processing have existed for a long time, since before the development of the electronic
computer. However, while much progress has been made over the years, computers are
still very far from being intelligent. Our belief is that machines will someday contain a
high level of intelligence. While we do not know when this may occur, or how the
intelligence will be implemented, we do envision this kind of intelligence (i.e., computer
intelligence) as being very different from its biological counterpart.

6.1 Describe the “Process”

As we attempt to describe intelligent information processing, we will encounter
many problems. These problems stem from the fact that we do not understand the
“intelligence process” well enough. Our ability to model the process depends on our
ability to describe the process. We have tried to describe various aspects of the process
throughout this report. We have treated intelligent information processing as a process
which transforms data into more useful and significant forms. That is, the process
involves transforming raw data into information and then into knowledge as shown by
the data spectrum (see Figure 2.1). This process has a direction associated with it, and
that direction leads to intelligence. As part of this process, goals must be established.
Mechanisms must exist which enable those goals to be achieved. Various approaches
must be evaluated, one or more chosen, and energy expended to reach the goals. As part
of our approach to modeling intelligent information processing, we try to harness the
potential of the process. One manner in which this potential is revealed is in the natural
order and organization present in data. We must exploit this order. We must develop and
incorporate the transformations necessary to realize and maintain this order in our model.
Whether working on specific details or general theory, top-down or bottom-up, a better
foundation must first be developed upon which models and applications can be built.

In treating intelligent information processing as a process, we must be able to
describe that process. Ideally this would include all aspects of the process. We cannot
fully describe the process, but we can try to summarize it. In an earlier report Yaworsky
and Vaccaro (1993) stated that:

... data analysis and information processing can be performed in machines

using models which perform functions analogous to those in the human
brain. The purpose, arguably, is to enable intelligent decisions.
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Intelligence requires understanding, which requires communication, which
requires language. Understanding involves the ability to learn and to
generalize. All of these processes must be realized and accomplished in
some kind of network which exploits the inherent components of data.
Frequency components have been emphasized in this work. Signals
containing high frequency components enter the brain in a parallel
fashion. Data gets filtered and focused into various ranges or levels
(octaves), resulting in lower and lower frequencies. Harmonic signals get
formed as a result of signal interferences in the network. Signals with the
strongest harmonics are those which best represent the nature of the data
and conform most to the structure of the network. Resulting signals can
be used by the network to learn, and can be stored as knowledge in the
form of connection weights (memory). The weights represent various
forms and kinds of data associations... (which) can be output using some
kind of language, resulting in communication, which keeps the process

going.

This is one simple example of how the process may be described. Many other
descriptions are possible. One thing shown by this description is that we are dealing with
an iterative process which, in essence, is concerned with the acquisition of knowledge.
As more is learned about the process, more will be asked of it, and more learned. The
mere act of focusing on different parts of the process, or focusing on different levels of
similar parts, may reveal more information and knowledge. In order to describe the
process, we realize that it would be helpful to identify some of the sub-processes
involved.

6.2 Identify Sub-Processes

What are the sub-processes of intelligence? With limited knowledge of the entire
process, we can try to break it down to further our understanding. From an engineering
standpoint, sub-processes lend themselves to implementation more easily than dealing
with an entire process all at once. From a human behavior standpoint, we can better
understand our thoughts and our actions if we break them down into simpler, more basic
components. As we go about our daily business, we perform various intelligent
functions, yet we may not know how or why they work. We cannot always explain our
behavior. This behavior results from a complex mix of forces and activities in our body
and within our brain. These forces affect mental signals. The job of the brain, as keeper
of intelligence, is to maintain order, harmony, balance and control of these signals. As
we stated earlier, the world exhibits natural order, and our understanding of the world
depends upon how well we perceive that order. By implementing intelligence as sub-
processes which exploit order, we may begin to realize and thus model the forces of
intelligence.

Some of the sub-processes (or functions) of intelligence discussed in this report
have included goals, decisions, learning, generalization, transformations, filtering,
focusing and common sense. Others not well-addressed include perception, attention,
awareness, emotions, feelings, thoughts, ideas, understanding, control, communication
and language. This is not an all-inclusive list, and the items in the list are not in any
special order. No attempt has been made to group them according to importance or
combine them according to scale (octave). We mention this only to give an indication of
how complex the task of automating intelligence is. Unfortunately, we must defer
analysis of many of these topics to another time. We provide a brief description of some
of the sub-processes of intelligence in the form of guidelines later in this chapter. We
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also point out that, in the end, many disciplines will necessarily contribute to the
modeling of these sub-processes. A partial list of these disciplines includes artificial
intelligence, cognitive science, psychology, biology, neurology, chemistry, physics,
mathematics and dynamical systems theory.

6.3 Model Key Components (the “Main Points™)

In dealing with a subject as complex as intelligent information processing, one
guideline we use to try and keep things in perspective is to “keep it simple, make it
useful.” This implies that we ought to concentrate on modeling key components of the
process, but not necessarily at the expense of overall functionality. One of the key
components of intelligent information processing involves the processing of main points
of thought. Our belief is that the tremendous importance of main points with respect to
the processes of intelligence must be recognized and exploited. Next we will discuss
main points in relation to resonance, associations, concepts, context and meaning.

Associations are input-output mappings which represent “cause and effect”
relationships. Associations relate input signals to output signals, or stimulus to response.
We use stimulus and response here in terms of mental/signal activity, and not in the
motor/physical sense. Many associations may be grouped together to form concepts. As
concepts form, they naturally inherit relational properties from their constituent
associations. Together these properties define the concept, but they also contain a special
kind of association, one which involves context. That is, when associations and concepts
form, references and ranges form along with them, relating signal associations and
concepts to appropriate contexts. Context is a function of scale, providing a frame of
reference, so to speak, which links a concept or association to an object, event or
situation. It is through the activation of concepts (associations) in conjunction with their
relevant contexts that signals take on meaning.

Since a concept is composed of many associations, a concept may be considered a
set of signals which forms a distribution. Each distribution of signals would contain
characteristic features such as reference and range. For a given distribution, the reference
may represent an aggregate main point, and the range may reflect the scale or context.
The characteristic nature of each distribution would depend on its constituent signals.
These signals have properties which are a function of the interaction of basic signal
components. The overall process is dynamic, and the nature of the resulting signal
activity involves much interaction and interference. For any complex network, the
possible number of signal combinations is tremendous. In the brain, this number is
seemingly infinite (literally mind-boggling).

Intelligent communication involves getting main points across from sender to
receiver. The communication process involves the transmission of signals which have a
natural hierarchy built into them. The existence of a hierarchy within the signal structure
of the communication process gives an indication that a similar kind of hierarchy is built
into the thought process as well. This hierarchy involves such things as associations,
concepts and messages which are built up or transformed from basic signal components
(i.e., frequency, phase and amplitude components). By combining signal components in
different ways, various cognitive constructs may result. For example, the formation of
perspectives, the existence of abstraction levels, and even understanding itself are all
artifacts of signal interaction. Thoughts are considered to be an orderly arrangement of
signal associations consisting of main points, supporting points and relevant contexts.
Since thoughts and communication both involve the expression of main points, we
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acknowledge their existence and look for ways to model them. This may lead to methods
for modeling the processes of thought.

We mentioned in an earlier chapter that signals may resonate in the brain. This
kind of resonance is considered beneficial, and not necessarily destructive as may be the
case in other situations involving resonance. Here we are talking about resonant activity
involving mental signals. This refers to a special kind of resonance in which the response
to forces acting on signals in the brain are characterized by intense or enriched vibrations.
Resonance results from the natural reinforcement of fundamental modes of vibration. In
this case the vibrations involve signals which comprise intelligence. These signals
interact with each other at many levels, from simple and basic to more complex and
abstract. At higher levels of abstraction, many signals may combine to form what we call
resonant concepts. Each resonant concept has a main point, along with many constituent
points, whose associations contribute to the concept as a whole. The resulting signal
activity exhibits a natural order or harmony. Depending on the nature of signal activity
present (i.e., the circumstances), various aspects of concepts and contexts may be
emphasized or lessened. Resonant concepts, in conjunction with appropriate contexts,
allow signals to take on meaning, and are thus considered significant components of
thought.

Another important aspect of resonant concepts involves direction. That is, we
must consider where the resonant concepts are going. Perhaps we allude to this when we
use the phrase “train of thought.” Where the process is going and how it might get there
are significant aspects of the overall process. However, while resonant signal activity
may be a characteristic feature of signal interaction, resonance is not necessarily a given
feature. The main point of a concept may or may not be exhibited by resonance. If main
points are not well-formed, or if they are buried in a morass of signal activity, signal
resonance may not occur. In certain situations, we may not come to fully “realize” the
underlying main points. One example of this is confusion. This occurs due to signal
interference during which incoming signals are not in accordance with stored signals or
any “expectations” resulting from these stored signals. The result is a lack of signal
harmony. Resonance, on the other hand, may indicate that a basic understanding, or a so-
called harmony of thought, is present. Understanding involves the recognition and
realization of underlying order and organization of signals present at a particular time.

In many situations we may never fully realize (understand) what others think or
do. We may not even understand certain things that we do. Perhaps in order to
understand, we must establish new connections in the brain, thereby enabling appropriate
associations and responses to occur. This is the essence of learning. Concepts and
contexts are stored (formed) during the learning process, and may be recalled or activated
by appropriate signal activity. However, as alluded to earlier, so many combinations of
signals are possible that it may take much effort to organize and/or activate a particular
sequence of signals. These sequences, or patterns, tend to be quite dynamic in nature. A
slightly different set of input patterns can easily result in different signal activity, possibly
changing a main point or context, which can drastically affect meaning. This illustrates
the complexity of the process and also the sensitive nature of the actual “state of mind”
with respect to learning, communication, interpretation and understanding.

Intelligence consists of many complex concepts supported by many complex
processes. Forces exist inside the brain (e.g., electrochemical, electromagnetic) which
cause various kinds of mental phenomena to occur. For instance, the creation of goals,
the making of decisions and the storing of knowledge are ways in which these forces can
manifest themselves. This activity leads to various kinds of behavior. One characteristic
feature of this behavior is the iterative process called knowledge acquisition. That is,
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knowledge is used (in more or less a self-fulfilling process) to gain more knowledge. We
are all blessed with intelligence, yet we do not exactly know how it works. We aren’t
able to see what the “big picture” of intelligence actually looks like. As we attempt to
automate intelligence, we must inevitably try to develop this “big picture.”

6.4 What Really Matters

A main point is a key component of intelligent signal activity. The physical
nature of many signals together can be thought of as forming a distribution. A common
shape for a distribution is the bell-shaped or normal curve. The peak of the normal curve
could be thought of as representing the main point of a distribution. We have suggested
that a distribution could be used to physically represent a concept and its constituent
associations. But intelligence involves more than the representation and manipulation of
main points. At a higher level, or perhaps at a different level of abstraction, we must
consider what really matters. For the most part this means considering the relative
significance of a main point with respect to an appropriate context. This also involves the
interaction of goals and circumstances.

To accomplish a goal, main points are typically considered in conjunction with
what is going on in the nearby environment. In one sense, what really matters depends
on the combined effects of the actual “state of mind” (internal signal activity) and the
current environment (external signal activity). What really matters now is a slightly
different phrase which emphasizes a form of short term goal. Sometimes what really
matters now may not matter much in the near future. This is because as time passes,
circumstances may change, or a person’s “state of mind” may change. The time-sensitive
nature of short-term goals in particular is indicative of the dynamic and time-sensitive
nature of information in general. Oftentimes if we look past the short-term nature of a
situation we can see a more stable form of what really matters. What we are implying
here is that goals are a driving force which have a significant impact on us in terms of
what really matters over time. Just as working towards achieving a goal is a dynamic
process, the process of determining what really matters is also dynamic. As we work
towards a goal, we must make relevant decisions by considering main points within
appropriate contexts. Together this process constitutes what really matters. To be able to
model this process, we must be able to identify and represent main points and also be
able to process the main points within proper contexts. Goals must be modeled as part of
the process, which necessarily must involve mechanisms for achieving those goals.

When considering what really matters, terms, meanings, concepts, goals, context
and perspective are important. This indicates the relative nature of what really matters.
That is, what really matters is dependent upon goals and expectations, on knowledge and
perspective, and on the meaning of concepts within appropriate contexts. All this
constitutes what can be termed the relative truth held by a person at a particular moment
in time. This may be summarized by the phrase “what really matters now.” The slightly
different phrase “what matters now” may actually refer to the dynamic processes which
constitute consciousness. As another comment on phraseology here, when we use the
phrase “in fact” or “as a matter of fact” we may or may not actually be stating a fact.
One thing to surmise from all this is that the absolute truth is elusive.

The overall process involving what really matters is iterative in nature. As we go
about considering and determining what really matters in a given situation, we cannot
help but learn. As we learn, we gain knowledge, which better enables us to determine
what really matters in the future. This iterative process is not unlike many of the other
iterative processes comprising intelligence. One difference in each process most likely
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stems from the different kinds of inputs used by the different processes. For any given
process or sub-process, we can envision certain kinds of parallel inputs being filtered to
produce fewer significant outputs. This reduction process involves evaluating tradeoffs
and making decisions. The criteria used in this reduction process may be any of a
number of things. While the criteria may be different, the actual underlying process
involved may not be so different. What really matters appears to be a fundamental sub-
process which feeds understanding, intelligence and consciousness. We do not yet know
how to represent this sub-process in a model, but we aim to uncover some of it’s
underlying mechanisms.

As part of the process of deciding what really matters, we must be able to identify
main points. The aspect of time is important, especially when considered in the context
of what really matters now. It is interesting to note that a longer term perspective can
often shed significant light on a situation even when one is mostly concerned with what
really matters now. As such, desired end-states (goals) may have a strong influence on
things even when they appear to be overshadowed by “more pressing matters.” The
“bottom line” is also interesting to consider, since it may indicate “main points of
thought” and even contribute (consciously or unconsciously) to future generalizations.
One product of the overall process of intelligence is knowledge. Consequently,
knowledge feeds other crucial “products” such as intelligence and consciousness. As a
result of learning, our knowledge base changes, and these changes have a direct and
significant impact on our inner self.

With respect to modeling, we can examine what really matters and try to
incorporate the mechanisms involved into a working model. We may fail to actually
state here what really matters, but at least we know that it in and of itself is an important
process. As such, one of it’s related sub-processes involves filtering. We are exposed to
so much information each day, but we typically focus on only a small amount of this
information at any given time. Depending on the situation, we can direct our attention to
a relatively small amount of incoming signal activity, understand it, and learn or make
decisions from it. In doing this we must naturally filter out a significant amount of
information. As such the process must involve trading off between the quality and
quantity of information. Meaning is also important (that is, the relative significance of a
main point with respect to an appropriate context). As part of intelligent information
processing we must be able to trade off between the quality and quantity of information
at any given time in order to determine what really matters.

6.5 Guidelines

As we go about trying to model intelligence, or automate intelligent information
processing, we look for proper guidelines to help us along the way. As an ongoing
exercise, we have compiled a list of terms which we have used over and over again in the
course of our work. Unfortunately (and ironically), due to the nature of the list, it is
difficult to organize the terms and give their exact meaning. As such, we feel that it is
inappropriate to present the list outright. Instead we offer these guidelines which contain
some main themes common among the terms. We hope that in doing this we may shed
some light on the underlying principles of intelligence. We know that over time our ideas
will have to be improved upon and our list of terms will have to be modified. We offer
these guidelines as an initial attempt at describing some of the functionality involved in
intelligent information processing.

One important guideline when trying to unravel the mysteries of intelligence is to
keep things in the proper perspective. A perspective is a point of view, with the point
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being a kind of reference, and the view depending upon scale. Goals are needed to keep
things in the proper perspective. The ability to assess the relative significance of matters,
or what really matters, is also crucial to the process. A perspective implies that a
direction or angle may be associated with a particular view. Also associated with a
perspective are limits and the issues of scale. Scale is a critical issue when it comes to
modeling intelligence. We have proposed the octave rule as a way to help filter and
focus data into natural ranges or scales. In conjunction with this, we have provided a
unique perspective in the form of the data spectrum. We have used the data spectrum to
describe the natural order present in data signals as well as to portray the relationships of
data signals as they transition from one form to another.

We have stated more than once that with respect to goals, one must be cognizant
of the direction in which the goal-process is going. In a practical sense, it may be
beneficial to consider the path and direction of the process, including where it has come
from and where it may be going. This is similar to considering the sources (and quality)
of information used in communication. In addition, very much related to goals are
decisions. The mechanisms used to trade off and weigh the various principles and
priorities associated with a particular goal are essential to intelligence. As such, the
decision-making process is a fundamental sub-process of intelligence.

Another important guideline regarding the intelligence process involves change.
We must be able to model change in a system. Dynamical systems concepts are being
developed and applied more and more as a means of representing complex, changing
behavior. One thing to remember in the modeling of intelligence is that we must
ultimately deal with signals, and dynamical systems concepts allow us to describe the
behavior of those signals as they interact and transition from one form to another on their
way towards intelligence. We encourage attempts to represent and exploit the natural
order present in all forms of data. As we try to reproduce the harmony of the process, we
will have to develop mechanisms for controlling the overall behavior of the model, such
as using feedback to maintain stability and overall balance.

Another critical issue in automating intelligent information processing is time. It
is extremely difficult to understand how the mechanisms of time play in our mind. We
can imagine all kinds of scenarios in which time affects our mental processes, but we are
a long way from knowing how to actually model the timing mechanisms of the brain.
Important concepts related to time are scale and form. Scale is a kind of boundary which
defines the forces acting upon signals present in whatever form at any given time. Time,
scale and form play together in such a way as to identify the main points of the process
when deciding what really matters. When it comes to modeling time, scale and form,
however, we most likely will struggle with each concept separately until we are able to
integrate them in a more appropriate fashion.

Our next guideline concerns understanding. This involves being able to establish
the meaning of concepts within appropriate contexts. For any given concept, we must be
able to determine a relevant main point as well as an appropriate context. Realizing a
concept without a proper context (and vice versa) does little good toward contributing to
intelligence. As we strive to consider what really matters at any given time, we must be
able to identify main points among signal activity, and then associate a range or scale
with each main point. A main point may be considered a reference, and a range or scale
may serve as a context. Taken together, main points and concepts can be used to make
sense out of a given situation. Probabilistic and statistical methods will be useful in
representing these kinds of processes.
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Another guideline stems from our idea that resonance may prove to be an
essential part of intelligent information processing. The interaction of mental signals,
with the ensuing constructive and destructive interference which must take place in the
brain, may result in a maximum response, a so-called “main point,” or the production of
dominant modes of signal vibration. These dominant modes of vibration may constitute a
resonant response necessary for intelligence to occur. This maximum response, or
resonance, may consist of the combination of all signals activated at one time and which
are related to a particular concept. The trick is in activating the proper combination of
signal associations! Since so many biological sub-processes appear to be iterative in
nature, it is not unlikely that critical components (i.e., seeds) of intelligence may exist
which, when developed properly, can result in signal resonance. Perhaps these seeds are
implanted as associations are formed inside the brain. Exploring the phenomena of
resonance may provide insight into the harmony of signals necessary for understanding
the functions of the brain. The frequency, phase and amplitude components of signals
may be useful in representing the physical transformations necessary for intelligent
behavior to occur.

The architecture of the brain provides insight into how we might want to construct
a model of the brain. Scores of processing elements, parallel connectivity and layered
functionality offer useful guidelines for the architecture of our model. Ideally the
approach taken should be modular, allowing for the incorporation of future
developments. The architecture of a model for intelligence must also support the desired
functionality from a practical point of view. This means that, aside from all the different
theories and implementations which exist, what works in the end should be taken
seriously. To this end, theoreticians and practitioners may learn from each other. Both
kinds of work are needed. Models will evolve. In any event, it may help modelers to
envision the process from a signal point of view.

Another architectural consideration involves the concept of weights, or the
storehouse of knowledge, as an essential part of learning. As concepts form, they
naturally acquire properties or values by way of some scheme which performs the
equivalent of setting the weights. Through learning, neurons and their interconnections
develop in such a way as to build up a propensity to activate, or make associations, based
on whatever signal activity is present. Through neural growth and development, the
circuitry is defined, and through learning, the pump is primed, so to speak. Weighting
mechanisms form which capture the essence of learning. The synapses in the brain are
believed to be responsible for much of this functionality. However, due to the fact that
there are so many neurons in the brain, and that each one has so many connections, we do
not even consider building a model exactly like the brain. Some say that this is
impossible to do, while others point out that we can already model some of the brain’s
functionality today. Since we are really after the essence of intelligence and learning,
whatever that may be, we would do well to model some of the functionality of the brain,
and not necessarily all of it.

As for the issue of representation, our model must ultimately be able to process
many forms of data. Whether all the data gets transformed into one form for processing,
or if it is processed in many different forms and combined later, any realistic model will
have to be able to handle various forms of data. This includes dealing with variability
and not just black and white concepts. One way to represent many kinds of data in a
unified form is to use pulse coding mechanisms. Proper transformation techniques may
be used to get various kinds of data into the form of pulses. The pulses can then be
processed in an integrated fashion, allowing for the embedded “information content” of
various signal patterns to be maintained while at the same time combining different kinds
of signal patterns in complex ways. Oscillatory computation techniques may also be used
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for more advanced forms of representation and processing. Binary representation and
Boolean logic are very useful for many things, but unfortunately for modeling purposes
the real world is analog and largely uncertain. One way to deal with these issues is to use
more approximate or probabilistic methods. An important factor in whatever approach
taken is to exploit the similarities and differences of signal components in whatever form
the signals may be in. Modeling mechanisms must certainly take advantage of this most
basic feature of intelligent signal activity.

In the design of any system, tradeoffs must be made which involve dealing with
all the forces present and resolving those forces in a controlled fashion. One way to
approach this is to break the forces down into smaller and smaller entities until they can
be dealt with as elementary components. In this fashion, mechanisms which handle
fundamental positive and negative forces, perhaps in the form of signal similarities and
differences, can be used in a variety of circumstances. This allows trade-offs to be made
among the various pros and cons of a situation, and is analogous to evaluating costs and
benefits for many different circumstances. The idea is to use simple processes over and
over again which will allow the modeling of some very complex tasks.

With respect to intelligence and understanding, we have mentioned the
importance and implications of meaning to the processes of intelligence. The realization
of meaning occurs when a reference or main point becomes associated with an
appropriate framework or context. From these associations, more abstract relationships
can be built, which can get quite complex when temporal aspects are taken into
consideration. Temporal patterns (sequences of data) are constantly being learned and
used by the brain. Consciousness involves the realization of these patterns by
interpreting the meaning of them in “real-time.” The sooner we realize the relative
significance of signal activity present, the more cognizant we appear. In order to
automate this process, we must be able to implement the essence of meaning in a
computer model. As such the model must be able to recognize the main points embedded
in communication and evaluate their significance within appropriate scales or contexts.

One way to approach implementing meaning is to group information according to
content or type, and then employ mechanisms to filter that information into finer and
finer categories. At the same time, mechanisms which combine resulting forms of data
may be used to produce themes or concepts, which would then get acted upon
appropriately within the hierarchical model. Obviously this is a crude description of a
complex process, but the bottom line is that filtering and focusing mechanisms are
essential to information processing, and signal activities equivalent to attention and
awareness are needed to transform many complex signals into fewer, more important
ones. One possible scenario is that the brain may use some of its machinery for
awareness, discerning the big picture and gleaning general information from lots of data,
while it uses a different set of machinery for attentional purposes, allowing it to hone in
on specific details. This scenario highlights the effect of many signals entering a network
(e.g., in parallel) and producing many fewer but more significant signals. As stated
earlier, this goes along with our concept of the data spectrum, and is also analogous to the
process a judge must perform when making a decision.

Finally, we remind you again that we are out to model the function of the brain,
and not necessarily its structure. While we may borrow from the brain’s structure, we
cannot borrow the entire thing! And while we may emulate certain functions, we cannot
exactly duplicate them. We must remember that for all of our efforts, all the ensuing
signal activity leads to something. The overall product is intelligence. Whether we
model its mechanisms directly or indirectly, we must remember that we are dealing with
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a process. We must also be cognizant of the overall direction in which that process is
going.

6.6 A Word of Caution

In considering what is involved in the automation of intelligent information
processing, we have examined what the field of artificial intelligence (AI) has to offer
society, both good and bad. On the good side, AI makes possible many efficient
mechanisms for processing information. Computers provide capabilities unmatched by
humans (just as machines ought to do). The vast amount of work in AI has helped
advance the state of the art in various computer technologies, while at the same time Al
aims to incorporate intelligence into automated information processing. This goal of Al
is extremely difficult to achieve, as we have seen, but it is arguably man’s destiny to
pursue this kind of work. However, as with any kind of effort, progress does not come
without a price. Writing, industrialization, and advanced forms of travel are examples of
some of the great achievements of mankind. Each of them, though, has its own set of
problems. For instance, with writing we have such things as libel and propaganda, with
industrialization have come waste and pollution, and advanced forms of travel bring with
them more catastrophic accidents and more rapid spread of disease. The point is that,
with any kind of technology or capability, care must be taken to ensure its proper use.
We must be especially careful when it comes to incorporating “intelligence” into
machines, as is the case with AI. On the bad side, Al-related technologies can surely be
misused. A big part of intelligence involves making decisions, which carry with them
associated responsibilities. The bottom line is that humans are ultimately responsible for
their decisions, which includes decisions concerning the control of their machines. Over
time, machines (hardware and software) will be used to perform more and more
functions. These machines must be designed carefully and used responsibly. Humans
must maintain authority over machines, exercising caution when relinquishing control to
them.
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7. Impact On Reliability Science and Electromagnetics
Technology

Artificial intelligence and neural networks are enabling technologies which will
serve to benefit many disciplines. As these so-called intelligent technologies mature,
more and more of their benefits will be realized, and applications will follow. Also,
entirely new disciplines will likely spring from technologies related to artificial
intelligence and neural networks. With today’s society firmly planted in the computer
age due to advances in microelectronics, computer systems and the networking of
systems, all trends indicate that computers will have a tremendous impact on society in
the future. This impact is felt strongly even today. But with respect to adding
intelligence to automated methods, the use and benefits of resulting computer
technologies can have an even greater impact.

The giant computer industry, however, despite its enormous progress over the
past few decades, has a long way to go when it comes to incorporating intelligence into
computer systems. For the most part this is not due to limitations of computer hardware
or software. The inability to automate intelligence stems from the fact that we do not yet
understand enough about the intelligence process to be able to model it. The foundations
of intelligence have sufficiently eluded mankind’s attempts to discover them ever since
the beginning of time. Countless efforts to discover and describe the processes of
intelligence have come up short, for whatever reason. Whether examining its inherent
mechanisms directly or indirectly, we still have not come up with the proper
mathematical equations, or even an adequate description in words, to enable us to capture
the essence of intelligence in the form of a model. What hope is there? What kind of
impact can this scenario have on reliability and electromagnetics technologies?

As it turns out, there is much hope. The natural processes of intelligence may be
elusive, but they exist nonetheless. And no doubt they are orderly processes. If we can
describe (at least some of) these processes and break them down into essential sub-
processes, we will be able to model their functionality using computers. Most if not all
the math and physics concepts needed to do this already exist. And today’s computer
technology is powerful enough to at least support the idea that intelligence can be
automated. So what is missing? Better models, for one thing, and the knowledge and
understanding needed to build these models! The benefits of computers are well known
in our society, and it is only a matter of time before these benefits include various
(advanced) forms of intelligence. This chapter addresses how efforts to automate
intelligence may benefit from, and also be beneficial to, reliability sciences and
electromagnetics technologies.

Before we talk about specific disciplines and their possible applications, we must
digress a moment. The extent which a new technology may be applied successfully to a
particular domain or discipline depends to a large part on the foundation or scientific
footing of that new technology. Artificial intelligence and neural networks (collectively
considered “AI” here) have been around for forty years, yet they are still considered new
technologies. This is because their acceptance and use has not yet become widespread.
Since fundamental principles in Al have not yet firmly been established, people may still
-consider them (relatively) new technologies. Researchers have tried feverishly to put
these so-called intelligent technologies on firm footing, with limited suceess. Of course
many applications of these technologies exist today, but all in all, the so-called intelligent
technologies are not an overwhelming success. Critics argue that Al has not been
successful at all, and skeptics say that the goal of automating intelligence is impossible to




achieve. In any event, Al is a very real technology and an important part of the natural
evolution of computers.

The core functionality of intelligence has not yet been discovered, and certainly
the essence of this functionality has not yet been automated. But try we will. Computers
are here to stay, and as we allow them to do more and more for us, it is inevitable that
they approach doing so more intelligently. One of the many troubling aspects resulting
from this is the fact that, from a development point of view, attempts to automate
intelligence are often so entwined with real intelligence that it may be difficult for the
casual observer to tell the difference between the intelligence of a computer program and
that of the programmer, or between the intelligence imbedded in hardware and that of its
designer. This distinction is not always clear-cut, and the question of who (or what)
performs so-called intelligent functions in Al applications is often difficult to resolve.
This situation will likely worsen in the future, as we allow computers to do more and
more for us and as Al technologies continue to mature. Computer researchers know all
too well how they must painstakingly compensate for what the machine (hardware and
software) cannot do with respect to intelligence. Now and in the future, complex issues
in Al-related applications may not be well-defined, the consequences of running
programs may not be well-known, and the responsibilities for actions taken may be left
unaccounted for. As we go about developing our so-called Al applications, we must also
(collectively) develop certain ground rules for these applications.

7.1 Signal Activity

Many disciplines contribute to the task of automating intelligence, with perhaps as
many different approaches as there are research groups. Conventional Al researchers
have concentrated heavily on symbolic and other high level aspects of intelligence, while
neural network researchers have emphasized approaches based on neurons and their
weighted connections. Other disciplines have examined the nature of intelligence from a
biological or psychological point of view, while still others have looked at various signal
_ processing techniques. But for the most part, the basic signals underlying intelligence
have not been modeled well enough. In this context signals imply mental signals, but
these signals can originate from many different physical sources (and be used by
computers also!). While the potential causes of signal activity may be pondered for a
long time, and the many possible effects of signal activity within the brain may never
exactly be known, the actual physical signals can nonetheless be considered one of the
raw materials enabling intelligent behavior. Of course these signals become embodied in
a brain and acted upon via a human body, but mental signals are an important piece of the
puzzle. We realize that the nature of these signals is abstract, and the interaction of these
mental signals with the physical body (i.e., the “mind”) are issues of great debate. But
we also acknowledge that signal activity plays a crucial role in the establishment of
intelligence. Consisting of frequency, phase and amplitude, these signals represent a
fundamental component to the physical aspects of intelligence.

While the significance of signals to processing, computation and the engineering
of physical systems has been recognized and used in various disciplines, researchers are
far from exploiting intelligent signals, and even further from automating intelligence as a
whole. Today’s computers thrive on digital signals, precise timing and explicit
instructions. But in reality, the Boolean principles upon which computers are based are
an extreme idealization of the natural world. That is, the 1’s and O’s inside a digital
computer are an extreme form of representing the mostly analog world. In many cases
discrete representation does well, but in many other cases it falls short. We cannot
exploit the use of (i.e., model) intelligent signals until we better understand them.
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Human communication typically involves the interchange of many signals. These
signals exist in various forms and carry complex meanings at different levels of
abstraction and sophistication. Each instance of communication may involve inherent
subtleties or assumptions between sender and receiver. So much is built into normal
communication that we would probably be amazed at what must occur (from an
engineering standpoint) in order for an “understanding” to be reached when people
communicate. Computers do not share the complexities or capabilities of the human
brain, nor do they “understand” anything the way we do. Computers must explicitly be
told what to do by way of a program. Little by little, these programs may be designed to
incorporate some form of “learning.” Humans, on the other hand, learn naturally, and
their “programming” implicitly involves learning.

The tremendous gap which exists between the highest levels of intelligence and
its fundamental signal components is not just a problem for the computer industry.
However, the problem seems to be exacerbated in computers by the use of discrete
representation, formal logic and certain forms of reasoning. The links between
intelligence and signal activity will remain obscure until we can better understand the
fundamentals of intelligence and how to exploit basic signal activity in automated
models. We all have some understanding (at a high level) of what constitutes intelligence
by virtue of using and observing it each day, but we would be hard pressed to describe it.
No one has been able to explain the finer details of intelligence and how these details
relate to the more general functions of the brain.

Our approach to automating intelligence emphasizes the use of signals whose
basic components can be used as building blocks in a hierarchical model. This involves
the development of various kinds of signal manipulation techniques stemming from
signal activity, including transformations, interference techniques (both positive and
negative) and dynamic interactions. This also requires a perspective which shows how
lower level signal components may combine to construct higher level functions, leading
to the formation of associations, concepts and sequences of events. Our signal-based
approach acknowledges that order and organization are a natural part of intelligent
signals, and we aim to uncover and exploit that order.

The approach of using basic signal components for various kinds of processing
and analysis 1s not new. Many disciplines have done just that for years. Each discipline
has its own way of gathering, representing, processing and interpreting data. To a large
extent, the sophistication of any system or discipline depends on how well it handles its
data. Intelligent analyses and methods which interpret signal activity help define a
discipline, and ultimately these functions contribute to that discipline’s foundation.
These intelligent functions may be passed on from generation to generation, or they may
be learned first-hand. Interestingly enough, the actual signal activity which initiates and
contributes to learning can be quite simple, and the signals may pass by quickly, but their
effects (i.e., their meaning) can last a lifetime.

A signal may be described as a physical embodiment of a message. The physical
nature of a message, with its many signal components, defines the kind of information the
message may convey. Communication is considered a necessary function of intelligence.
During communication, information is conveyed from source to destination. Being the
essence of communication, signals may be perceived as the lifeblood of intelligence.
One of the mysteries of this is understanding how relatively simple, basic signals can
actually contribute to the formation of something as complex as intelligence.
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The signal-based approach to automating intelligence aims to examine the
physical nature of the intelligence-phenomenon across many levels. Modeling attempts
must begin with a description of the phenomenon. Depending on what level of
functionality is being modeled, a mathematical description may suffice, or a more
qualitative or textual description may be required. Herein lies one of the major
difficulties in attempting to automate intelligence: a detailed description (involving
appropriate representation and meaning) is required for conventional automated methods,
yet we do not know enough to provide such a detailed description. On the other hand,
less precise descriptions may enable the modeling of some intelligent functions, but these
are inherently more difficult to automate.

In our efforts to automate intelligence, we acknowledge that many approaches
must be investigated, combined and improved upon. No single approach has the market
on the nature of intelligence at any level. Our emphasis has been on a signal-based
approach, which naturally draws from many disciplines. This basic approach simply
hasn’t been applied well enough to the automation of intelligence. There are many issues
to resolve, ranging from general to specific. As we investigate ways to automate
intelligence, we can learn from existing techniques in more mature disciplines. Next we
will discuss how efforts to automate intelligence may benefit from, and also be beneficial
to, reliability sciences and electromagnetics technology.

7.2 Physical and Mathematical Concerns

The physical and mathematical aspects of signal components and their resulting
behavior provide a significant contribution to the automation of intelligence.
Mathematical methods will necessarily be used to describe the physical nature of signals,
and the overall behavior of signal activity must conform to the laws of physics. In time
our knowledge and understanding of the intelligence process will progress. The
intelligence process is continuous, as knowledge transitions from one generation to the
next. Understanding is a more integral part of intelligence than knowledge and represents
the implementation of knowledge in an individual for a particular purpose. We should
not expect to discover or understand intelligence fully, but to work toward improving
what is already known. As we move in the direction of increased understanding, we must
be concerned with basic principles in math and physics, and investigate ways in which
these concepts may relate to the automation of intelligent information processing.

The reliability sciences and electromagnetics disciplines each have technology
concerns related to the automation of intelligence. The study of electromagnetics
involves a variety of phenomena and signal activity which act both in and around us. The
physical and mathematical aspects of electromagnetic energy have been studied for well
over a century, with many significant developments being made. However, as far as the
brain is concerned, we know too little about how electromagnetic energy affects internal
functions, or how the brain generates and uses its own electromagnetic energy. Yet as
Roger Penrose put it, “there is no doubt that electromagnetic phenomena have relevance
to the workings of our brains” (Penrose, 1989). In time we will come to know better the
significance of electromagnetic effects within the brain, but in the meantime, we go by
the premise that the behavior of the brain and that of other electromagnetic systems have
more in common than we now realize. Advancements in one discipline can lead to
developments in another.

Basic principles in the reliability sciences involve different but no less important

phenomena. Reliability involves a study of the natural forces acting upon a system, and
represents a measure of how that system will operate under certain conditions over a
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specified period of time. The science of reliability is rooted in probability and statistics.
Mathematical modeling and analyses can indicate which reliability parameters most
directly impact system performance, leading to better design tradeoffs, more cost
effective system development and improved quality. All physical systems involve
actions and interactions which have consequences. At some point these consequences
may be perceived as signals, the nature of which provides an indication of system
behavior. The better we can model this behavior, the better we can predict system
performance.

Fundamental similarities exist between reliability, electromagnetics and the so-
called intelligent technologies at various levels. At a high level, each discipline must deal
with vast amounts of data (signal activity). This data exists in various forms, and its
presence ultimately affects technology-related decisions. The implication here is that the
decisions are “intelligent” and that the data has a direct impact on the decisions. In
reality, this is often not the case, with complex, indirect and often unknown relationships
existing among data and any conclusions drawn from them. The decision-making
process consists of many lesser processes. Interactions and combinations of data signals
present at any one time contribute to the hierarchy of intelligence. The organization and
behavior of these interactions create information, which may then be transformed to
knowledge and used for the purposes of intelligence.

At lower levels of analysis, commonality exists by virtue of similar methods for
handling signal activity. This includes representing and processing signal associations
and patterns using various tools and techniques of the trade. In reliability, cause and
effect relationships are represented using principles which are rooted in physics and
mathematics, especially in probability and statistics. These include such considerations
as averaging, approximations, assumptions, confidence intervals, combinations and
uncertainty. An overall goal of reliability is to ensure that system performance meets
expectations. Efforts are aimed at achieving quality systems at affordable cost. In
electromagnetic technologies, the main concern is to ensure that electromagnetic
behavior of a system is acceptable, and that electromagnetic performance meets
expectations. This not only involves the investigation of electromagnetic energy present
within a system, but also the coupling and interference of signals in the surrounding
environment. Resulting signal interactions can be very complex. Yet electromagnetic
energy is a highly organized form of energy. This organization involves an
“information” component as discussed in Chapter 1. Insight may be gained from the
study of electromagnetics which will aid in the automation of intelligence. Likewise,
efforts to automate intelligence will spur new ideas involving electromagnetic effects and
related system behavior.

From a physical point of view, intelligent information processing, reliability and
electromagnetics each involve physical signals entering and interacting within a complex
system. From a mathematical point of view, equations can be developed which represent
the nature and behavior of these signals. This drastic simplification does not mean that
automating this kind of signal activity is a straightforward process. The process has
proven to be anything but straightforward. However, signal components (frequency,
phase and amplitude) contribute to the natural harmony of a system, and beginning with
basic principles of signal components we can build models which reflect the natural
hierarchy and organization of an entire system. Signal harmony is a by-product, or effect,
of a system. The root cause of the harmony is the interaction of fundamental forces (in
this case signal components) naturally present in a system. The most significant point of
all this is that signals in all forms contain orderly components (e.g., information). We
aim to develop and exploit this fact.
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7.3 Manual Tools of the Trade

Rome Laboratory (formerly Rome Air Development Center) supports a wide
variety of technology research and development in electromagnetics and the reliability
sciences. As part of a continuing commitment to satisfy Air Force mission requirements,
electromagnetics and reliability are two of the enabling technologies developed and
coordinated at Rome Laboratory on behalf of the Air Force, and in some cases, the entire
Department of Defense. Various resources exist in the form of tools, techniques, services
and of course the expertise needed to evaluate the electromagnetic performance and
reliability requirements of electronic systems. Capabilities include unique design,
analysis, modeling, simulation and test facilities at various locations in New York and
Massachusetts.

Historically the tools of the trade in reliability and electromagnetics have been
developed by hand and applied manually to mission problems. With these disciplines
deeply rooted in the mathematical and physical sciences, tasks often involved
calculations which were tedious and labor-intensive. Whenever possible, these tasks
were initially performed with the help of machines (e.g., calculating devices or electrical
test equipment). These disciplines have developed and matured over the years to the
point where manual tools and techniques have given way to sophisticated automated
methods. The foundation of these disciplines, however, was laid by the development and
use of manual methods. Today’s electronic technologies, from transistors to computers
to the internet, have planted us firmly in the information age. However, we should not
forget that the precursors to these technological advancements were manual methods,
having helped establish the reliability and electromagnetics disciplines into substantial
and essential technology areas.

In the electromagnetics domain, work at Rome Laboratory has concentrated on
the generation, transmission, detection and interaction of electromagnetic energy within
Air Force systems. Concerns have ranged from electromagnetic effects of
microelectronic devices to the performance of entire platforms. This includes internal
electromagnetic behavior as well as coupling effects due to signals from nearby antennas.
A related concern deals with system behavior in environments which are
electromagnetically rich, whatever the source of signals. As one of the fundamental
forces in nature, electromagnetic behavior is a crucial concern in the development of
electronic equipment.

In the reliability sciences, emphasis is on the design, analysis, fabrication, testing
and specification of electronic components and systems (see, for example, Morris and
MacDiarmid et al., 1995). Reliability modeling includes allocation, correlation,
assessment, classification, optimization, recognition, estimation, diagnosis and
prediction. Quality is a big part of the ultimate goal to ensure adequate system
performance at affordable cost over a system’s lifetime. Continuous improvement of
relevant processes is an important part of the quality program. This includes monitoring,
identifying and controlling variations of key parameters in order to optimize the
underlying processes. There can be no doubt that reliability is a critical discipline -- it
must be considered sooner or later, and from a cost point of view, sooner is better.

As part of every engineering application, decisions must be made with respect to
system performance and reliability. Cost is always a big factor, but certainly not the only
one. Many other considerations must be made and tradeoffs continually evaluated to
support system-related decisions. Because of the difficulties involved with understanding
and evaluating decision criteria, the need exists for better data collection, representation,

52



analysis, and modeling techniques. This implies the need for automation. While manual
tasks and new ideas will always be necessary, more and more emphasis is being made,
and energy expended, on efforts to automate these processes. To help improve reliability
modeling for electronic systems, and to help evaluate the behavior of complex
electromagnetic systems, computers are being used to facilitate the investigation and
application of these technologies.

7.4 Automating Tools of the Trade

Given the widespread availability of computers today, more and more tasks in
virtually every discipline are being automated. This is driven by the natural tendency to
perform job functions as efficiently as possible. Automation provides the ability to
perform tasks quicker, easier and more accurately. Computers also enable many tasks to
be performed which were previously impractical or just not possible. In the reliability
sciences and electromagnetics disciplines, many tools and techniques have been
developed over the years which provide a variety of data analysis and information
processing capabilities. Advances in modeling and simulation techniques have
drastically changed the way designers, engineers and analysts do their jobs.

Many of the benefits associated with automating tools of the trade in reliability
and electromagnetics include the ability to design, test, analyze and validate system
performance in a simulated or synthetic environment. This may occur in conjunction
with actual development, in parallel with it, or it may involve theoretical research
accomplished in lieu of physical system development. Computer simulations produce a
model which by definition is not the same as the real thing, but scientists and engineers
are finding that computer modeling can be a viable alternative to actual development.
Whether it involves theory or practice, investigating new techniques or improving
existing ones, computers offer a substantial mechanism for performing tasks in today’s
workplace.

Rome Laboratory has been involved in the development of many automated
reliability tools over the years. Tasks performed by software packages run the gamut in
data analysis (Fuqua, 1993). Actually, the functions performed in software are limited
only by the constraints which exist due to the state of the art in computer modeling and
existing theory. For example, statistical techniques not only include quantitative methods
but may also include qualitative ones, such as those available through approximate
reasoning techniques (e.g., fuzzy logic). Automated techniques also provide the ability
to filter through enormous amounts of data now available from sensors, diagnostic
circuitry and networks of databases. The limiting factor in analysis today is no longer the
lack of data or processing power, but the inability to model appropriate processes which
translate data into something more useful.

Electromagnetics work at Rome Laboratory mainly focuses on the performance of
antennas used in Air Force systems. The behavior of electromagnetic signals in the form
of antenna patterns are evaluated through various means to ensure that the interference or
coupling of electromagnetic energy is such that it conforms to system specifications.
Models have been developed which help investigate electromagnetic phenomena and
enable the analysis of electromagnetic fields in Air Force systems (Siarkiewicz, 1987).

Ironically, one realization of the work performed at Rome Laboratory has
indicated that while certain benefits may be gained from the automation of tools and
techniques, other problems may be introduced because of the automation. For instance,
each automated technique requires formal specification and formatting of software to
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ensure its proper use and operation. Also, hardware which can execute the software must
be readily available. While this may not be a problem in some applications (such as for
standalone packages), conflicts may arise as modifications are required or as automated
packages must interact and share data across platforms. The current trend in information
processing and concurrent engineering involves the integration of resources which may
be physically separate. The issues of networking and combining diverse resources are
becoming increasingly important, and the success of future systems development depends
on methods which will alleviate problems resulting from this integration and automation.

Computerized models are designed to process data in an efficient manner. The
speed and precision of current computer technology drastically outperforms human
capabilities for certain kinds of operations. But in many other instances, such as image
recognition, dynamic decision making and the formation of ideas, the computer is just no
match for human capabilities. Together, however, the possibilities are virtually limitless.
Humans provide the intelligence, and computers provide the means to automate. We live
in a data driven world. That is, the world is an orderly one, and data (signal activity in
one form or another) is the key to revealing this order. The ultimate use for data is to
support the processes of intelligence, in one way or another. We work toward
implementing these processes in the form of automated tools and techniques.

7.5 Adding Intelligence to Automated Tools

We have mentioned many times in this report that while automated methods are
becoming more and more widespread, adding intelligence to these automated methods
will not be easy. This goes for the automated tools and techniques of reliability and
electromagnetics. Each discipline will be impacted differently by the automation of
intelligence, and each will have to deal with advancements in computer technology as it
sees fit. In the past, Al has had a relatively small impact in the reliability sciences and
electromagnetic technologies. Various efforts at Rome Laboratory have investigated
using Al technologies to facilitate or augment the implementation of certain tasks,
especially diagnostics and testing (Cooper et al., 1989 and 1991, and Broadwater et al.,
1995). The application of AI technologies is also being investigated in attempts to
simplify the electromagnetic modeling and simulation process (Drozd et al., 1996).
However, due to the subjective nature of modeling, the lack of maturity in Al techniques
and the overall complexity of relevant tasks in general, Al applications have achieved
limited success. As we learn more about the underlying processes of intelligence, and as
modeling techniques improve, we will become better able to realize the potential benefits
resulting from the integration of these technologies. Due to fundamental similarities
between reliability science, electromagnetic theory and the processes of intelligence,
mutual benefits will be gained by advancements in each discipline.

Reliability and electromagnetics may benefit from the automation of intelligence
in various ways. The statistical and probabilistic principles which form the basis of
reliability sciences may be enhanced by data analysis techniques fashioned after those
occurring in the brain. The ability to adapt to a changing environment and to represent
and process complex data relationships may inspire new ideas and enable the
development of better statistical models. Likewise, electromagnetic modeling will
benefit from “smarter” techniques developed to simplify or otherwise ease the
computational burdens associated with electromagnetic modeling. Processing
capabilities fashioned after signal activity in the brain may provide insight into problems
associated with identifying, transforming and combining pertinent signal information.
For instance, rules of thumb and heuristic techniques which have been developed over the
years may be encoded into rules or developed into other kinds of (intelligent) algorithms.
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We may also glean knowledge from fundamentals in electromagnetic technology as they
relate to the interaction and transformation of data in various forms as portrayed by the
data spectrum (see Chapter 2).

We have discussed various topics which are related to the automation of
intelligence in Chapter 5, such as goals, decisions, common sense and the importance of
time, scale and form. Future research must address these and many other aspects of
intelligence. But in the end, software programs must include the ability to learn in order
to be considered intelligent. Learning involves being able to exploit differences and
handle variations in data. This functionality may be accomplished in different ways and is
in fact difficult enough to achieve to warrant the collaboration of researchers in diverse
technical areas.

As we work toward automating intelligent information processing, we must
acknowledge the overall goal, but also realize the general direction in which the work is
proceeding. In this report we have not provided details on how to automate intelligence,
but we have proposed an approach which describes some ideas to pursue and some
feasible paths to take. We have not established a sufficient theoretical foundation, yet we
have identified simple components of signal activity and have hinted at how these may
contribute to higher levels of intelligence. Along the way we must learn to recognize,
both in “real life” and in our models, that significant associations exist among the many
lesser signal components present at any one time. We need to model the process which
can identify such associations.

Benefits stemming from the automation of intelligence will eventually be
realized, some being generic in nature while others applying directly to only a few
disciplines. Much of the necessary physical and mathematical constructs needed to
automate intelligence exists today. What we need are better models. We have searched
for a better framework, and have offered a different perspective on the issue of
automating intelligence. As is true for any technology, if it is applied too early (i.e.,
before it is on a solid foundation), then the application will not last. That is not to say
that there are no benefits in trying! On the contrary, there are many reasons for applying
technologies as early as possible. But in the long run, a good foundation is a must. In
any event, progress will occur over time, with many different researchers working to
realize this progress.

In this report we have described a particular kind of process. This process
involves many technical disciplines and encompasses a natural progression. The
progression begins with certain natural forces which produce interesting behavior whose
phenomena may be physically observed and mathematically described. This behavior
may be characterized in models which are developed to describe and control the
behavior. The models can then be used to help solve problems associated with the
resulting behavior. Over the years many such models have been developed by hand and
manipulated manually in virtually every discipline. Lately many of these models have
become automated. Eventually these models may come to incorporate some form of
intelligence as part of their nature. An underlying premise of our work is that this
progression, this process, must first be mentally realized before it can be physically
described in the form of a model. Ultimately this means that we must realize the essence
of intelligence. Once we “perceive” this enormous stumbling block, we can begin to
transform it into smaller stepping stones.
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8. Summary

We have examined the overall process of intelligent information processing and
tried to break it down into basic sub-processes. The goal is to automate some of these
processes and apply them to domain-specific problems. We have had to be open to many
different ideas, concepts and developments in order to do this. We realize that we fall far
short of finishing the task. We also realize that we must be open to change, for the
processes we are after are so dependent upon change. As we consider the many
possibilities of signals interacting in the confines of our model, we must figure ways to
orchestrate and direct their activity. In other words, we need to figure out how the signals
play together. In our attempts to achieve this so-called harmony in our model, we know
that we have optimized versions of similar processes in our own brains. The time is
drawing nearer when we may automate some of these processes.

We take so much for granted when it comes to intelligent information processing.
For instance, how the powerful and elusive concept of information may lead to
intelligence is largely a mystery. Before we can automate something, and do it well, we
really have to understand the basic operations and functions involved. We have provided
a unique perspective on our approach to automating intelligent information processing.
We have come to certain realizations concerning the processes involved, even though our
realizations come in the form of a conceptual model. The most significant realization is
that a process is at work in intelligent information processing. We have discussed how
order and change are fundamental to this process. Another important consideration
involves what the process may lead to, or where it is going. We have used the concept of
the data spectrum to show how data may be transformed into knowledge. We have also
used the octave rule to illustrate how filtering, focusing and scaling are part of the
process. With respect to modeling and artificial intelligence, we have emphasized the
approach of manipulating signals rather than the more conventional Al approach of
manipulating symbols. Other modeling concerns involve the use of pulses, oscillators
and “state attractors” to model dynamic behavior. Intelligent information processing is
most definitely a dynamic process. As for reliability and electromagnetics, we have seen
how these disciplines both contribute to and benefit from the automation of intelligent
information processing. From the reliability sciences have come many theories and
techniques for modeling and analyzing different forms of data, with emphasis on
probabilistic and statistical methods. In electromagnetics, models characterize signal
activity and interaction with respect to the electromagnetic spectrum. Both of these
disciplines are believed to be major, related, and largely untapped sources of information
applicable to automating intelligent information processing.

As we strive to develop appropriate models, we try to keep our model simple yet
useful. We know that the functionality we are after is quite complex, but we hope that
our ideas and perspective offer a unique contribution to the task at hand. Our description
has been simple and quite general, but one thing we have learned is that general concepts
can be very powerful and useful. If done properly, generalization allows the synthesis of
many simple ideas and concepts into fewer, more significant ones. As such, this report is
only an introduction. As the process becomes better defined, it will require continuous
improvement along with the development of many necessary details. We know we have
raised many questions and given too few answers. The motivation for this work is that
the benefits will far outweigh the effort. This description is part of our quest for
knowledge about a process we use every day of our life, yet know too little about. We
hope that the work described here will help enable the development and realization of this
evolving and elusive process into workable models. Our contribution is small. We know
we have only scratched the surface. But we believe this is a step in the right direction.
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9. Final Remarks

Researchers in artificial intelligence have always faced difficult problems,
working in largely uncharted territory. One of the more sticky problems has been this:
fundamental principles, or underlying concepts, describing and defining intelligence and
intelligent information processing do not exist in a tangible form! This undermines
efforts to “automate” them. A better foundation and framework are needed. With a solid
foundation, robust models can be built. To see the framework, one must have a view of
the big picture. This involves having an appropriate perspective. It is along these lines
that we have presented our work here.

Our general goal is to enable more efficient (i.e., intelligent) processing of
information. We aim to develop better modeling tools and techniques using
mathematical transforms, advanced representation and appropriate processing techniques.
We must break the “process” down into fundamental principles and then build
applications upon these principles. This will occupy the efforts of researchers for many
years to come. The important point here is that we work “toward” a solid, fundamental
goal, one that, although not easy to achieve, will not change much and is worthy of our
time and energy. To that end, an overriding goal is to identify and describe the
phenomena involving intelligence, and to sufficiently model that behavior using
computer technology.

We recommend, as a minimum, a dual approach toward automating intelligent
information processing. One approach involves looking at the entire picture. We need to
understand the intelligence process in general before we can sufficiently model it. This
not only provides direction and balance to the development of a model, but also helps
provide a much needed description of the intelligence process. Even at this high level,
though, we must break the process down and examine the kinds of functions needed. For
instance, scaling, transformations, analysis, synthesis and interaction of signals are
fundamental to the process. As we work to understand and describe these sub-processes,
we must develop a functional model which incorporates the necessary general principles.

The second part of the dual approach involves developing fundamental
components for the model. This requires that tools and techniques be developed in detail,
ones which allow the desired functionality to be implemented. We must be able to build
our model using elementary components, detailed equations and specific techniques.
This collection of fine details will dictate how the physical model will operate. The
fundamental behavior of the model will initially be implemented in the form of computer
simulation. Ultimately the two approaches (top-down and bottom-up) must be combined.
The resulting model will consist of detailed techniques which are compatible with high
level functional blocks, forming a cohesive hierarchical network.

As this dual approach achieves results, they can be used to benefit acquisition
cycle design and decision-making processes in many ways. A typical set of tasks in
phenomenological modeling and simulation would be to gather and filter data, identify
significant parameters, establish limits, recognize trends, match patterns, perform trade-
off analyses, make decisions and achieve goals. These tasks are part of the problem-
solving process. We perform these tasks naturally. One could even say that we learn to
do them “automatically.” However, while computers do everything “automatically,” they
can hardly learn to do any of these tasks naturally. We aim to reveal portions of the
intelligence process and incorporate useful techniques into computational models.
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OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.




